RESEARCH ARTICLE

A free-standing superhydrophobic film for highly efficient removal of water from turbine oil

  • Fan Shu 1 ,
  • Meng Wang 1 ,
  • Jinbo Pang 2 ,
  • Ping Yu , 1
Expand
  • 1. College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
  • 2. Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China

Received date: 08 Apr 2018

Accepted date: 12 Jun 2018

Published date: 15 Jun 2019

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

A free-standing superhydrophobic film is prepared by sequentially dip-coating a commercially available filter paper with nano SiO2 suspension, epoxy emulsion, and octyltrimethoxysilane solution. A surface with micro- or nano-roughness is formed because SiO2 nanoparticles are uniformly and firmly adhered on the backbone of the filter paper by the cured epoxy resin. Furthermore, the surface energy is significantly reduced because of introducing octytrimethoxysilane. Such a surface structure makes the prepared film a superhydrophobic material. Due to its free-standing nature, this superhydrophobic film can be used to remove water from turbine oil by filtration. The efficiency of water removal is high (up to 94.1%), and the filtration process is driven solely by gravity without extra energy consumption. Because of the facile fabrication process and the high efficiency of water removal, this free-standing superhydrophobic film may find application in power industry.

Cite this article

Fan Shu , Meng Wang , Jinbo Pang , Ping Yu . A free-standing superhydrophobic film for highly efficient removal of water from turbine oil[J]. Frontiers of Chemical Science and Engineering, 2019 , 13(2) : 393 -399 . DOI: 10.1007/s11705-018-1754-3

Acknowledgements

This work is supported by Yunnan power grid Co., Ltd.
1
Cheng Y Y, He G, Barras A, Coffinier Y, Lu S X, Xu W G, Szunerits S, Boukherroub R. One-step immersion for fabrication of superhydrophobic/superoleophilic carbon felts with fire resistance: Fast separation and removal of oil from water. Chemical Engineering Journal, 2018, 331: 372–382

DOI

2
Su X, Li H, Lai X, Zhang L, Liao X, Wang J, Chen Z, He J, Zeng X. Dual-functional superhydrophobic textiles with asymmetric roll-down/pinned states for water droplet transportation and oil-water separation. ACS Applied Materials & Interfaces, 2018, 10(4): 4213–4221

DOI

3
Olszowska K, Pang J B, Wrobel P S, Zhao L, Ta H Q, Liu Z F, Trzebicka B, Bachmatiuk A, Rummeli M H. Three-dimensional nanostructured graphene: Synthesis and energy, environmental and biomedical applications. Synthetic Metals, 2017, 234: 53–85

DOI

4
Pang J, Mendes R G, Wrobel P S, Wlodarski M D, Ta H Q, Zhao L, Giebeler L, Trzebicka B, Gemming T, Fu L, Liu Z, Eckert J, Bachmatiuk A, Rümmeli M H. Self-terminating confinement approach for large-area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition. ACS Nano, 2017, 11(2): 1946–1956

DOI

5
Hao Q, Pang J B, Zhang Y, Wang J W, Ma L B, Schmidt O G. Boosting the photoluminescence of monolayer MoS2 on high-density nanodimer arrays with sub-10 nm gap. Advanced Optical Materials, 2018, 6(2): 1700984

DOI

6
Pang J B, Bachmatiuk A, Yin Y, Trzebicka B, Zhao L, Fu L, Mendes R G, Gemming T, Liu Z F, Rummeli M H. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Advanced Energy Materials, 2018, 8(8): 1702093

7
Meng X R, Wang C H, Zhou P, Xin X Q, Wang L. Transport and selectivity of indium through polymer inclusion membrane in hydrochloric acid medium. Frontiers of Environmental Science & Engineering, 2017, 11(6): 9

DOI

8
Guo G L, Liu L B, Zhang Q, Pan C G, Zou Q Q. Solution-processable, durable, scalable, fluorine-grafted graphene-based superhydrophobic coating for highly efficient oil/water separation under harsh environment. New Journal of Chemistry, 2018, 42(5): 3819–3827

DOI

9
Zhu T R, Li Z M, Luo Y B, Yu P. Pervaporation separation of dimethyl carbonate/methanol azeotrope through cross-linked PVA-poly(vinyl pyrrolidone)/PAN composite membranes. Desalination and Water Treatment, 2013, 51(28‒30): 5485–5493

DOI

10
Yin L, Zhang H F, Shi S Y, Lu Y, Wang Y, Liu X W. Numerical investigation of relationship between water contact angle and drag reduction ratio of superhydrophobic surfaces. Frontiers in Physics, 2016, 11(3): 114701

DOI

11
Xu Y H, Cui S Y. A novel fluid catalytic cracking process for maximizing iso-paraffins: From fundamentals to commercialization. Frontiers of Chemical Science and Engineering, 2018, 12(1): 9–23

DOI

12
Yi N, Bao S H, Zhou H J, Xin Y C, Huang A B, Ma Y N, Li R, Jin P. Preparation of microstructure-controllable superhydrophobic polytetrafluoroethylene porous thin film by vacuum thermal-evaporation. Frontiers of Materials Science, 2016, 10(3): 320–327

DOI

13
Jiang X B, Tuo L H, Lu D P, Hou B H, Chen W, He G H. Progress in membrane distillation crystallization: Process models, crystallization control and innovative applications. Frontiers of Chemical Science and Engineering, 2017, 11(4): 647–662

DOI

14
Li D, Gou X, Wu D, Guo Z. A robust and stretchable superhydrophobic PDMS/PVDF@KNFs membrane for oil/water separation and flame retardancy. Nanoscale, 2018, 10(14): 6695–6703

DOI

15
Bano S, Zulfiqar U, Zaheer U, Awais M, Ahmad I, Subhani T. Durable and recyclable superhydrophobic fabric and mesh for oil-water separation. Advanced Engineering Materials, 2018, 20(1): 1700460

DOI

16
Singh J, Rathi A, Rawat M, Gupta M. Graphene: From synthesis to engineering to biosensor applications. Frontiers of Materials Science, 2018, 12(1): 1–20

DOI

17
Liang S, Gao P, Gao X Q, Xiao K, Huang X. Improved blending strategy for membrane modification by virtue of surface segregation using surface-tailored amphiphilic nanoparticles. Frontiers of Environmental Science & Engineering, 2016, 10(6): 9

DOI

18
Kong W B, Miao Q, Qin P Y, Baeyens J, Tan T W. Environmental and economic assessment of vegetable oil production using membrane separation and vapor recompression. Frontiers of Chemical Science and Engineering, 2017, 11(2): 166–176

DOI

19
Suresh K, Pugazhenthi G, Uppaluri R. Preparation and characterization of hydrothermally engineered TiO2-fly ash composite membrane. Frontiers of Chemical Science and Engineering, 2017, 11(2): 266–279

DOI

20
Han S W, Kim K D, Seo H O, Kim I H, Jeon C S, An J E, Kim J H, Uhm S, Kim Y D. Oil-water separation using superhydrophobic PET membranes fabricated via simple dip-coating of PDMS-SiO2 nanoparticles. Macromolecular Materials and Engineering, 2017, 302(11): 1700218

DOI

21
Wang K, Pang J, Li L, Zhou S, Li Y, Zhang T. Hydrophilic carbon nanotubes/reduced graphene oxide composite films activated with flash light irradiation. Frontiers of Chemical Science and Engineering, 2018, 12(3): 376–382

DOI

22
Yang H, Zhang J L, Yi B L. Clean energy technology: Materials, processes and devices for electrochemical energy conversion and storage. Frontiers in Energy, 2017, 11(3): 233–235

DOI

23
Li B J, He G H, Jiang X B, Dai Y, Ruan X H. Pressure swing adsorption/membrane hybrid processes for hydrogen purification with a high recovery. Frontiers of Chemical Science and Engineering, 2016, 10(2): 255–264

DOI

24
Loganathan M, Velmurugan A, Page T, Gunasekaran E J, Tamilarasan P. Combustion analysis of a hydrogen-diesel fuel operated DI diesel engine with exhaust gas recirculation. Frontiers in Energy, 2017, 11(4): 568–574

DOI

25
Lian Z, Xu J, Wang Z, Yu Z, Weng Z, Yu H. Nanosecond laser-induced underwater superoleophobic and underoil superhydrophobic mesh for oil/water separation. Langmuir, 2018, 34(9): 2981–2988

DOI

26
Xiao N, Zhou Y, Ling Z, Qiu J. Synthesis of a carbon nanofiber/carbon foam composite from coal liquefaction residue for the separation of oil and water. Carbon, 2013, 59: 530–536

DOI

27
Tang H, Hao L, Chen J, Wang F, Zhang H, Guo Y. Surface modification to fabricate superhydrophobic and superoleophilic alumina membranes for oil/water separation. Energy & Fuels, 2018, 32(3): 3627–3636

DOI

28
Siddiqui A R, Maurya R, Balani K. Superhydrophobic self-floating carbon nanofiber coating for efficient gravity-directed oil/water separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(6): 2936–2946

DOI

29
Jiang B, Zhang H J, Zhang L H, Sun Y L, Xu L D, Sun Z N, Gu W H, Chen Z X, Yang H W. Novel one-step, in situ thermal polymerization fabrication of robust superhydrophobic mesh for efficient oil/water separation. Industrial & Engineering Chemistry Research, 2017, 56(41): 11817–11826

DOI

30
Liu M, Liu S H, Xu Z L, Wei Y M, Yang H. Formation of microporous polymeric membranes via thermally induced phase separation: A review. Frontiers of Chemical Science and Engineering, 2016, 10(1): 57–75

DOI

31
Li T, Yu P, Luo Y B. Deoxygenation performance of polydimethylsiloxane mixed-matrix membranes for dissolved oxygen removal from water. Journal of Applied Polymer Science, 2015, 132(4): 41350

DOI

32
Li H G, Lin Y W, Yu P, Luo Y B, Hou L W. FTIR study of fatty acid fouling of reverse osmosis membranes: Effects of pH, ionic strength, calcium, magnesium and temperature. Separation and Purification Technology, 2011, 77(1): 171–178

DOI

33
Li H, Lin Y, Luo Y, Yu P, Hou L. Relating organic fouling of reverse osmosis membranes to adsorption during the reclamation of secondary effluents containing methylene blue and rhodamine B. Journal of Hazardous Materials, 2011, 192(2): 490–499

DOI

34
Wang L, Lin Y, Yang L, Yu P, Xie Z, Luo Y. Candida tropicalis: Characterization of a strain capable of degrading high concentrations of phenol. Biotechnology Letters, 2011, 33(5): 943–946

DOI

35
Li T, Yu P, Luo Y B. Preparation and properties of hydrophobic poly(vinylidene fluoride)SiO2 mixed matrix membranes for dissolved oxygen removal from water. Journal of Applied Polymer Science, 2014, 131(13): 40430

DOI

36
Zhu T R, Lin Y W, Luo Y B, Hu X, Lin W H, Yu P, Huang C. Preparation and characterization of TiO2-regenerated cellulose inorganic-polymer hybrid membranes for dehydration of caprolactam. Carbohydrate Polymers, 2012, 87(1): 901–909

DOI

37
Huang Y B, Jin H Y, Yu P, Luo Y B. Polyamide thin-film composite membrane based on nano-silica modified polysulfone microporous support layer for forward osmosis. Desalination and Water Treatment, 2016, 57(43): 20177–20187

DOI

38
Zhou L W, Yu P, He Y H, Xia H H, Guo X L, Luo Y B. A facile dip-coating approach to stable superhydrophobic SiO2/epoxy resin membrane preparation for micro-water separation in transformer oil liquids. RSC Advances, 2015, 5(113): 92947–92953

DOI

39
Zhou H R, Liu X J, Guo C, Yang Y F. Preparation of waterborne epoxy resin emulsion. Advanced Materials Research, 2012, 610-613: 494–497

DOI

40
Jin F L, Li X, Park S J. Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry, 2015, 29: 1–11

DOI

41
Chruściel J J, Lesniak E. Modification of epoxy resins with functional silanes, polysiloxanes, silsesquioxanes, silica and silicates. Progress in Polymer Science, 2015, 41: 67–121

DOI

Outlines

/