REVIEW ARTICLE

Carbon-based materials for photodynamic therapy: A mini-review

  • Di Lu ,
  • Ran Tao ,
  • Zheng Wang
Expand
  • School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China

Received date: 10 May 2018

Accepted date: 05 Jun 2018

Published date: 15 Jun 2019

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Carbon-based materials have been extensively applied in photodynamic therapy owing to the unique optical characteristics, good biocompatibility and tunable systematic toxicity. This mini-review mainly focuses on the recent application of carbon-based materials including graphene, carbon nanotube, fullerene, corannulene, carbon dot and mesoporous carbon nanoparticle. The carbon-based materials can perform not only as photosensitizers, but also effective carriers for photosensitizers in photodynamic therapy, and its combined treatment.

Cite this article

Di Lu , Ran Tao , Zheng Wang . Carbon-based materials for photodynamic therapy: A mini-review[J]. Frontiers of Chemical Science and Engineering, 2019 , 13(2) : 310 -323 . DOI: 10.1007/s11705-018-1750-7

Acknowledgements

The authors acknowledge the funding support from the National Basic Research Program of China (Granted No. 2015CB856500).
1
Dougherty T J, Henderson B W. Photodynamic therapy. Marcel Dekker, 1992, 1–15

2
Dougherty T J, Gomer C J, Henderson B W, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic therapy. Journal of the National Cancer Institute, 1998, 90(12): 889–905

DOI PMID

3
Allison R R, Mota H C, Sibata C H. Clinical PD/PDT in North America: An historical review. Photodiagnosis and Photodynamic Therapy, 2004, 1(4): 263–277

DOI PMID

4
Silva T C, Pereira A F F, Exterkate R A, Bagnato V S, Buzalaf M A, Machado M A, Ten Cate J M, Crielaard W, Deng D M. Application of an active attachment model as a high-throughput demineralization biofilm model. Journal of Dentistry, 2012, 40(1): 41–47

DOI PMID

5
Kennedy J C, Pottier R H. Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 1992, 14(4): 275–292 doi:10.1016/1011-1344(92)85108-7

PMID

6
Szygula M, Pietrusa A, Adamek M, Wojciechowski B, Kawczyk-Krupka A, Cebula W, Duda W, Sieron A. Combined treatment of urinary bladder cancer with the use of photodynamic therapy (PDT) and subsequent BCG-therapy: A pilot study. Photodiagnosis and Photodynamic Therapy, 2004, 1(3): 241–246

DOI PMID

7
Lyons M, Phang I, Eljamel S. The effects of PDT in primary malignant brain tumours could be improved by intraoperative radiotherapy. Photodiagnosis and Photodynamic Therapy, 2012, 9(1): 40–45

DOI PMID

8
Date M, Fukuchi K, Namiki Y, Okumura A, Morita S, Takahashi H, Ohura K. Therapeutic effect of photodynamic therapy using PAD-S31 and diode laser on human liver cancer cells. Liver International, 2004, 24(2): 142–148

DOI PMID

9
Algharib A M, Sultan A, Parekh J, Vaz F, Hopper C. Endoluminal tracheal stenting prior to head and neck PDT. Photodiagnosis and Photodynamic Therapy, 2014, 11(3): 444–446

DOI PMID

10
Overholt B F, Panjehpour M, Haydek J M. Photodynamic therapy for Barrett’s esophagus. Gastrointestinal Endoscopy, 1997, 7(2): 207–220

DOI PMID

11
Moghissi K. Endoscopic photodynamic therapy (PDT) for oesophageal cancer. Photodiagnosis and Photodynamic Therapy, 2006, 3(2): 93–95

DOI PMID

12
Ortner M. Photodynamic therapy for cholangiocarcinoma. Journal of Hepato-Biliary-Pancreatic Sciences, 2001, 8(2): 137–139

DOI PMID

13
Berr F, Wiedmann M, Tannapfel A, Halm U, Kohlhaw K R, Schmidt F, Wittekind C, Hauss J, Mössner J. Photodynamic therapy for advanced bile duct cancer: Evidence for improved palliation and extended survival. Hepatology, 2000, 31(2): 291–298

DOI PMID

14
Bown S G, Rogowska A Z, Whitelaw D E, Lees W R, Lovat L B, Ripley P, Jones L, Wyld P, Gillams A, Hatfield A W. Photodynamic therapy for cancer of the pancreas. Gut, 2002, 50(4): 549–557

DOI PMID

15
Qiang Y, Zhang X, Li J, Huang Z. Medical progress. Chinese Medical Journal, 2006, 119(10): 845–857

PMID

16
Kereiakes D J, Szyniszewski A M, Wahr D, Herrmann H C, Simon D I, Rogers C, Kramer P, Shear W, Yeung A C, Shunk K A, . Phase I drug and light dose-escalation trial of motexafin lutetium and far red light activation (phototherapy) in subjects with coronary artery disease undergoing percutaneous coronary intervention and stent deployment: Procedural and long-term results. Circulation, 2003, 108(11): 1310–1315

DOI PMID

17
Pollock B, Turner D, Stringer M R, Bojar R A, Goulden V, Stables G I, Cunliffe W J. Topical aminolaevulinic acid-photodynamic therapy for the treatment of acne vulgaris: A study of clinical efficacy and mechanism of action. British Journal of Dermatology, 2004, 151(3): 616–622

DOI PMID

18
Dolmans D E, Fukumura D, Jain R K. Photodynamic therapy for cancer. Nature Reviews: Cancer, 2003, 3(5): 380–387

DOI PMID

19
Ding L. Phthalocyanine based photosensitizers for photodynamic therapy. Chinese Journal of Inorganic Chemistry, 2013, 29(8): 1591–1598

20
Zhenjun D, Lown J W. Hypocrellins and their use in photosensitization. Photochemistry and Photobiology, 1990, 52(3): 609–616

DOI PMID

21
Cao J, An H, Huang X, Fu G, Zhuang R, Zhu L, Xie J, Zhang F. Monitoring of the tumor response to nano-graphene oxide-mediated photothermal/photodynamic therapy by diffusion-weighted and BOLD MRI. Nanoscale, 2016, 8(19): 10152–10159

DOI PMID

22
Rong P, Yang K, Srivastan A, Kiesewetter D O, Yue X, Wang F, Nie L, Bhirde A, Wang Z, Liu Z, . Photosensitizer loaded nano-graphene for multimodality imaging guided tumor photodynamic therapy. Theranostics, 2014, 4(3): 229–239

DOI PMID

23
Ogbodu R O, Ndhundhuma I, Karsten A, Nyokong T. Photodynamic therapy effect of zinc monoamino phthalocyanine-folic acid conjugate adsorbed on single walled carbon nanotubes on melanoma cells. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2015, 137: 1120–1125

DOI PMID

24
Ogbodu R O, Amuhaya E K, Mashazi P, Nyokong T. Photophysical properties of zinc phthalocyanine-uridine single walled carbon nanotube--conjugates. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2015, 149: 231–239

DOI PMID

25
Wang X, Yang C X, Chen J T, Yan X P. A dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy. Analytical Chemistry, 2014, 86(7): 3263–3267

DOI PMID

26
Yu C, Avci P, Canteenwala T, Chiang L Y, Chen B J, Hamblin M R. Photodynamic therapy with hexa (sulfo-n-butyl) [60] fullerene against sarcoma in vitro and in vivo. Journal of Nanoscience and Nanotechnology, 2016, 16(1): 171–181

DOI PMID

27
Jiang B P, Hu L F, Shen X C, Ji S C, Shi Z, Liu C J, Zhang L, Liang H. One-step preparation of a water-soluble carbon nanohorn/phthalocyanine hybrid for dual-modality photothermal and photodynamic therapy. ACS Applied Materials & Interfaces, 2014, 6(20): 18008–18017

DOI PMID

28
Zhang M, Murakami T, Ajima K, Tsuchida K, Sandanayaka A S, Ito O, Iijima S, Yudasaka M. Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(39): 14773–14778

DOI PMID

29
Battigelli A, Ménard M C, Bianco A. Carbon nanomaterials as new tools for immunotherapeutic applications. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2014, 2(37): 6144–6156

DOI

30
Li Q, Hong L, Li H, Liu C. Graphene oxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light. Biosensors & Bioelectronics, 2017, 89(Part 1): 477–482

DOI PMID

31
Shi J, Liu Y, Wang L, Gao J, Zhang J, Yu X, Ma R, Liu R, Zhang Z. A tumoral acidic pH-responsive drug delivery system based on a novel photosensitizer (fullerene) for in vitro and in vivo chemo-photodynamic therapy. Acta Biomaterialia, 2014, 10(3): 1280–1291

DOI PMID

32
Hong G, Diao S, Antaris A L, Dai H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chemical Reviews, 2015, 115(19): 10816–10906

DOI PMID

33
Modugno G, Ménard-Moyon C, Prato M, Bianco A. Carbon nanomaterials combined with metal nanoparticles for theranostic applications. British Journal of Clinical Pharmacology, 2015, 172(4): 975–991

DOI PMID

34
Bitounis D, Ali-Boucetta H, Hong B H, Min D H, Kostarelos K. Prospects and challenges of graphene in biomedical applications. Advanced Materials, 2013, 25(16): 2258–2268

DOI PMID

35
Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chemical Society Reviews, 2013, 42(2): 530–547

DOI PMID

36
Shi S, Yang K, Hong H, Valdovinos H F, Nayak T R, Zhang Y, Theuer C P, Barnhart T E, Liu Z, Cai W. Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials, 2013, 34(12): 3002–3009

DOI PMID

37
Shi X, Gong H, Li Y, Wang C, Cheng L, Liu Z. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials, 2013, 34(20): 4786–4793

DOI PMID

38
Qin J, Chen H, Chang H, Ma Y, Chen Y. Highly reusable and environmentally friendly solid fuel material based on three-dimensional graphene foam. Energy & Fuels, 2016, 30(11): 9876–9881

DOI

39
Kuo W S, Shao Y T, Huang K S, Chou T M, Yang C H, Chen P, Chang C, Huang C, Hsu C, Chou T. Antimicrobial amino-functionalized nitrogen-doped graphene quantum dots for eliminating multidrug-resistant species in dual-modality photodynamic therapy and bioimaging under two-photon excitation. ACS Applied Materials & Interfaces, 2018, 10(17): 14438–14446

DOI PMID

40
Markovic Z M, Ristic B Z, Arsikin K M, Klisic D G, Harhaji-Trajkovic L M, Todorovic-Markovic B M, Kepic D P, Kravic-Stevovic T K, Jovanovic S P, Milenkovic M M, . Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials, 2012, 33(29): 7084–7092

DOI PMID

41
Ge J, Lan M, Zhou B, Liu W, Guo L, Wang H, Jia Q, Niu G, Huang X, Zhou H, . A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nature Communications, 2014, 5(1): 4596

DOI PMID

42
Liu Y, Xu Y, Geng X, Huo Y, Chen D, Sun K, Zhou G, Chen B, Tao K. Synergistic targeting and efficient photodynamic therapy based on graphene oxide quantum dot-upconversion nanocrystal hybrid nanoparticles. Small, 2018, 14(19): e1800293

DOI PMID

43
Chatterjee D K, Fong L S, Zhang Y. Nanoparticles in photodynamic therapy: An emerging paradigm. Advanced Drug Delivery Reviews, 2008, 60(15): 1627–1637

DOI PMID

44
Chen D, Tao R, Tao K, Chen B, Choi S K, Tian Q, Xu Y, Zhou G, Sun K. Efficacy dependence of photodynamic therapy mediated by upconversion nanoparticles: Subcellular positioning and irradiation productivity. Small, 2017, 13(13): 1602053

DOI PMID

45
Hu D, Zhang J, Gao G, Sheng Z, Cui H, Cai L. Indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites with amplifying photoacoustic and photothermal effects for cancer theranostics. Theranostics, 2016, 6(7): 1043–1052

DOI PMID

46
Zhou L, Zhou L, Wei S, Ge X, Zhou J, Jiang H, Li F, Shen J. Combination of chemotherapy and photodynamic therapy using graphene oxide as drug delivery system. Journal of Photochemistry and Photobiology B: Biology, 2014, 135(3): 7–16

DOI PMID

47
McCallion C, Burthem J, Rees-Unwin K, Golovanov A, Pluen A. Graphene in therapeutics delivery: Problems, solutions and future opportunities. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 104: 235–250

DOI PMID

48
Cho Y, Choi Y. Graphene oxide-photosensitizer conjugate as a redox-responsive theranostic agent. Chemical Communications, 2012, 48(79): 9912–9914

DOI PMID

49
Akbari T, Pourhajibagher M, Hosseini F, Chiniforush N, Gholibegloo E, Khoobi M, Shahabi S, Bahador A. The effect of indocyanine green loaded on a novel nano-graphene oxide for high performance of photodynamic therapy against Enterococcus faecalis. Photodiagnosis and Photodynamic Therapy, 2017, 20: 148–153

DOI PMID

50
Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials, 2012, 33(7): 2206–2214

DOI PMID

51
Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Research, 2012, 5(3): 199–212

DOI

52
Tian B, Wang C, Zhang S, Feng L, Liu Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano, 2011, 5(9): 7000–7009

DOI PMID

53
Sahu A, Choi W I, Lee J H, Tae G. Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials, 2013, 34(26): 6239–6248

DOI PMID

54
Wang Y, Wang H, Liu D, Song S, Wang X, Zhang H. Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy. Biomaterials, 2013, 34(31): 7715–7724

DOI PMID

55
Gollavelli G, Ling Y C. Magnetic and fluorescent graphene for dual modal imaging and single light induced photothermal and photodynamic therapy of cancer cells. Biomaterials, 2014, 35(15): 4499–4507

DOI PMID

56
Hu Z, Li J, Huang Y, Chen L, Li Z. Functionalized graphene/C60 nanohybrid for targeting photothermally enhanced photodynamic therapy. RSC Advances, 2014, 5(1): 654–664

DOI

57
Pu J, Mo Y, Wan S, Wang L. Fabrication of novel graphene-fullerene hybrid lubricating films based on self-assembly for MEMS applications. Chemical Communications, 2014, 50(4): 469–471

DOI PMID

58
Song P, Liu L, Huang G, Yu Y, Guo Q. Largely enhanced thermal and mechanical properties of polymer nanocomposites via incorporating C60@graphene nanocarbon hybrid. Nanotechnology, 2013, 24(50): 505706

DOI PMID

59
Geim A K. Graphene: Status and prospects. Science, 2009, 324(5934): 1530–1534

DOI PMID

60
Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R, Ruoff R S. Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 2010, 22(35): 3906–3924

DOI PMID

61
Sun X, Liu Z, Welsher K, Robinson J T, Goodwin A, Zaric S, Dai H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 2008, 1(3): 203–212

DOI PMID

62
Gulzar A, Xu J, Yang D, Xu L, He F, Gai S, Yang P. Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy. Dalton Transactions, 2018, 47(11): 3931–3939

DOI PMID

63
Falvo M R, Clary G J, Taylor R M II, Chi V, Brooks F P Jr, Washburn S, Superfine R. Bending and buckling of carbon nanotubes under large strain. Nature, 1997, 389(6651): 582–584

DOI PMID

64
Falvo M R, Taylor R M II, Helser A, Chi V, Brooks F P Jr, Washburn S, Superfine R. Nanometre-scale rolling and sliding of carbon nanotubes. Nature, 1999, 397(6716): 236–238

DOI PMID

65
Yazid M N A W M, Sidik N A C, Mamat R, Najafi G. A review of the impact of preparation on stability of carbon nanotube nanofluids. International Communications in Heat and Mass Transfer, 2016, 78: 253–263

DOI

66
Wei B Q, Vajtai R, Jung Y, Ward J, Zhang R, Ramanath G, Ajayan P M. Microfabrication technology: Organized assembly of carbon nanotubes. Nature, 2002, 416(6880): 495–496

DOI PMID

67
Gandra N, Chiu P L, Li W, Anderson Y R, Mitra S, He H, Gao R. Photosensitized singlet oxygen production upon two-photon excitation of single-walled carbon nanotubes and their functionalized analogs. Journal of Physical Chemistry C: Nanomaterials and Interfaces, 2009, 113(13): 5182–8185

DOI PMID

68
Murakami T, Nakatsuji H, Inada M, Matoba Y, Umeyama T, Tsujimoto M, Isoda S, Hashida M, Imahori H. Photodynamic and photothermal effects of semiconducting and metallic-enriched single-walled carbon nanotubes. Journal of the American Chemical Society, 2012, 134(43): 17862–17865

DOI PMID

69
Wang L, Shi J, Liu R, Liu Y, Zhang J, Yu X, Gao J, Zhang C, Zhang Z. Photodynamic effect of functionalized single-walled carbon nanotubes: A potential sensitizer for photodynamic therapy. Nanoscale, 2014, 6(9): 4642–4651

DOI PMID

70
Ali-Boucetta H, Kostarelos K. Carbon nanotubes in medicine & biology—therapy and diagnostics. Advanced Drug Delivery Reviews, 2013, 65(15): 1897–1898

DOI PMID

71
Andersen A J, Robinson J T, Dai H, Hunter A C, Andresen T L, Moghimi S M. Single-walled carbon nanotube surface control of complement recognition and activation. ACS Nano, 2013, 7(2): 1108–1119

DOI PMID

72
Ma X, Zhang L H, Wang L R, Xue X, Sun J H, Wu Y, Zou G, Wu X, Wang P C, Wamer W G, . Single-walled carbon nanotubes alter cytochrome c electron transfer and modulate mitochondrial function. ACS Nano, 2012, 6(12): 10486–10496

DOI PMID

73
Staicu A, Smarandache A, Pascu A, Pascu M L. Photophysics of covalently functionalized single wall carbon nanotubes with verteporfin. Applied Surface Science, 2017, 417: 170–174

DOI

74
Aveline B, Hasan T, Redmond R W, Aveline B, Hasan T, Redmond R W. Photophysical and photosensitizing properties of benzoporphyrin derivative monoacid ring A (BPD-MA). Photochemistry and Photobiology, 1994, 59(3): 328–335

DOI PMID

75
Sah U, Sharma K, Chaudhri N, Sankar M, Gopinath P. Antimicrobial photodynamic therapy: Single-walled carbon nanotube (SWCNT)-Porphyrin conjugate for visible light mediated inactivation of Staphylococcus aureus. Colloids and Surfaces B: Biointerfaces, 2018, 162: 108–117

DOI PMID

76
Bachilo S M, Strano M S, Kittrell C, Hauge R H, Smalley R E, Weisman R B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 2002, 298(5602): 2361–2366

DOI PMID

77
Zhang M, Wang J, Wang W, Zhang J, Zhou N. Magnetofluorescent photothermal micelles packaged with GdN@CQDs as photothermal and chemical dual-modal therapeutic agents. Chemical Engineering Journal, 2017, 330: 442–452

DOI

78
Singh R, Torti S V. Carbon nanotubes in hyperthermia therapy. Advanced Drug Delivery Reviews, 2013, 65(15): 2045–2060

DOI PMID

79
Liang C, Diao S, Wang C, Gong H, Liu T, Hong G, Shi X, Dai H, Liu Z. Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Advanced Materials, 2014, 26(32): 5646–5652

DOI PMID

80
Zhang B, Wang H, Shen S, She X, Shi W, Chen J, Zhang Q, Hu Y, Pang Z, Jiang X. Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor. Biomaterials, 2016, 79: 46–55

DOI PMID

81
Murali V S, Mikoryak C, Wang R, Draper R K. Abstract 5374: Effect of carbon nanotube amount and subcellular location on the near infrared (NIR) photothermal ablation of cells. Cancer Research, 2014, 74(19): 5374–5374

DOI

82
Hashida Y, Tanaka H, Zhou S, Kawakami S, Yamashita F, Murakami T, Umeyama T, Imahori H, Hashida M. Photothermal ablation of tumor cells using a single-walled carbon nanotube-peptide composite. Journal of Controlled Release, 2014, 173(1): 59–66

DOI PMID

83
Marangon I, Ménard-Moyon C, Silva A K A, Bianco A, Luciani N, Gazeau F. Synergic mechanisms of photothermal and photodynamic therapies mediated by photosensitizer/carbon nanotube complexes. Carbon, 2016, 97(6): 110–123

DOI

84
Xie L, Wang G, Zhou H, Zhang F, Guo Z, Liu C, Zhang X, Zhu L. Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy. Biomaterials, 2016, 103: 219–228

DOI PMID

85
Zhang M, Wang W, Cui Y, Chu X, Sun B, Zhou N, Shen J. Magnetofluorescent Fe3O4/carbon quantum dots coated single-walled carbon nanotubes as dual-modal targeted imaging and chemo/photodynamic/photothermal triple-modal therapeutic agents. Chemical Engineering Journal, 2018, 338: 526–538

DOI

86
Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E. C60: Buckminsterfullerene. Nature, 1985, 318(6042): 162–163

DOI

87
Krätschmer W, Lamb L D, Fostiropoulos K, Huffman D R. Solid C60: A new form of carbon. Nature, 1990, 347(6291): 354–358

DOI

88
Wilson R J, Meijer G, Bethune D S, Johnson R D, Chambliss D, de Vries M S, Hunziker H E, Wendt H R. Imaging C60 clusters on a surface using a scanning tunnelling microscope. Nature, 1990, 348(6302): 621–622

DOI

89
Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environmental Science & Technology, 2005, 39(5): 1378–1383

DOI PMID

90
Cai X, Hao J, Zhang X, Yu B, Ren J, Luo C, Li Q, Huang Q, Shi X, Li W, Liu J. The polyhydroxylated fullerene derivative C60(OH)24 protects mice from ionizing-radiation-induced immune and mitochondrial dysfunction. Toxicology and Applied Pharmacology, 2010, 243(1): 27–34

DOI PMID

91
Li Z, Pan L L, Zhang F L, Wang Z, Shen Y Y, Zhang Z Z. Preparation and characterization of fullerene (C60) amino acid nanoparticles for liver cancer cell treatment. Journal of Nanoscience and Nanotechnology, 2014, 14(6): 4513–4518

DOI PMID

92
Otake E, Sakuma S, Torii K, Maeda A, Ohi H, Yano S, Morita A. Effect and mechanism of a new photodynamic therapy with glycoconjugated fullerene. Photochemistry and Photobiology, 2010, 86(6): 1356–1363

DOI PMID

93
Arbogast J W, Darmanyan A P, Foote C S, Diederich F N, Whetten R L, Rubin Y, Alvarez M M, Anz S J. Photophysical properties of sixty atom carbon molecule (C60). Journal of Physical Chemistry, 2002, 95(1): 11–12

DOI

94
Saitoh Y, Miyanishi A, Mizuno H, Kato S, Aoshima H, Kokubo K, Miwa N. Super-highly hydroxylated fullerene derivative protects human keratinocytes from UV-induced cell injuries together with the decreases in intracellular ROS generation and DNA damages. Journal of Photochemistry and Photobiology B: Biology, 2011, 102(1): 69–76

DOI PMID

95
Iwamoto Y, Yamakoshi Y. A highly water-soluble C60-NVP copolymer: A potential material for photodynamic therapy. Chemical Communications, 2006, 46(46): 4805–4807

DOI PMID

96
Asada R, Liao F, Saitoh Y, Miwa N. Photodynamic anti-cancer effects of fullerene [C60]-PEG complex on fibrosarcomas preferentially over normal fibroblasts in terms of fullerene uptake and cytotoxicity. Molecular and Cellular Biochemistry, 2014, 390(1–2): 175–184

DOI PMID

97
Li Z, Zhang F L, Pan L L, Zhu X L, Zhang Z Z. Preparation and characterization of injectable Mitoxantrone poly (lactic acid)/fullerene implants for in vivo chemo-photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2015, 149: 51–57

DOI PMID

98
Shi J, Wang B, Wang L, Lu T, Fu Y, Zhang H, Zhang Z. Fullerene (C60)-based tumor-targeting nanoparticles with “off-on” state for enhanced treatment of cancer. Journal of Controlled Release, 2016, 235: 245–258

DOI PMID

99
Wang H, Agarwal P, Zhao S, Yu J, Lu X, He X. Combined cancer therapy with hyaluronan-decorated fullerene-silica multifunctional nanoparticles to target cancer stem-like cells. Biomaterials, 2016, 97: 62–73

DOI PMID

100
Hu Q, Sun W, Lu Y, Bomba H N, Ye Y, Jiang T, Isaacson A J, Gu Z. Tumor microenvironment-mediated construction and deconstruction of extracellular drug-delivery depots. Nano Letters, 2016, 16(2): 1118–1126

DOI PMID

101
Barth W E, Lawton R G. Dibenzo [ghi,mno] fluoranthene. Journal of the American Chemical Society, 1966, 88(2): 380–381

DOI

102
Zoppi L, Martin-Samos L, Baldridge K K. Effect of molecular packing on corannulene-based materials electroluminescence. Journal of the American Chemical Society, 2011, 133(35): 14002–14009

DOI PMID

103
Spisak S N, Zabula A V, Filatov A S, Rogachev A Y, Petrukhina M A. Selective endo and exo binding of alkali metals to corannulene. Angewandte Chemie, 2011, 50(35): 8090–8094

DOI PMID

104
Baldridge K K, Siegel J S. Corannulene-based fullerene fragments C20H10-C50H10: When does a buckybowl become a buckytube? Theoretical Chemistry Accounts, 1997, 97(1–4): 67–71

DOI

105
Lovas F J, McMahon R J, Grabow J U, Schnell M, Mack J, Scott L T, Kuczkowski R L. Interstellar chemistry: A strategy for detecting polycyclic aromatic hydrocarbons in space. Journal of the American Chemical Society, 2005, 127(12): 4345–4349

DOI PMID

106
Liu S, Lu D, Wang X, Ding D, Kong D, Wang Z, Zhao Y. Topology dictates function: Controlled ROS production and mitochondria accumulation via curved carbon materials. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2017, 5(25): 4918–4925

DOI

107
Zhang L, Dong X, Lu D, Liu S, Ding D, Kong D, Fan A, Wang Z, Zhao Y. Controlled ROS production by corannulene: The vehicle makes a difference. Biomaterials Science, 2017, 5(7): 1236–1240

DOI PMID

108
Liu J H, Cao L, LeCroy G E, Wang P, Meziani M J, Dong Y, Liu Y, Luo P G, Sun Y P. Carbon quantum dots for fluorescecne labelling of cells. ACS Applied Materials & Interfaces, 2015, 7(34): 19439–19445

DOI PMID

109
Huang P, Lin J, Wang X, Wang Z, Zhang C, He M, Wang K, Chen F, Li Z, Shen G, . Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Advanced Materials, 2012, 24(37): 5104–5110

DOI PMID

110
Zheng D W, Li B, Li C X, Fan J X, Lei Q, Li C, Xu Z, Zhang X Z. Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting. ACS Nano, 2016, 10(9): 8715–8722

DOI PMID

111
Fang Y, Lv Y, Gong F, Wu Z, Li X, Zhu H, Zhou L, Yao C, Zhang F, Zheng G, . Interface tension-induced synthesis of monodispersed mesoporous carbon hemispheres. Journal of the American Chemical Society, 2015, 137(8): 2808–2811

DOI PMID

112
Xu G J, Liu S J, Niu H, Lv W P, Wu R A. Functionalized mesoporous carbon nanoparticles for targeted chemo-photothermal therapy of cancer cells under near-infrared irradiation. RSC Advances, 2014, 4(64): 33986–33997

DOI

113
Zhou L, Dong K, Chen Z W, Ren J S, Qu X G. Near-infrared absorbing mesoporous carbon nanoparticle as an intelligent drug carrier for dual-triggered synergistic cancer therapy. Carbon, 2015, 82: 479–488

DOI

114
Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761): 622–627

DOI PMID

115
Kang S, Herzberg M, Rodrigues D F, Elimelech M. Antibacterial effects of carbon nanotubes: Size does matter! Langmuir, 2008, 24(13): 6409–6413

DOI PMID

116
Sayes C M, Gobin A M, Ausman K D, Mendez J, West J L, Colvin V L. Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials, 2005, 26(36): 7587–7595

DOI PMID

117
Shin D H, Tam Y T, Kwon G S. Polymeric micelle nanocarriers in cancer research. Frontiers of Chemical Science and Engineering, 2016, 10(3): 348–359

DOI

118
Zhang P, Ye J, Liu E, Sun L, Zhang J, Lee S, Gong J, He H, Yang V C. Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer. Frontiers of Chemical Science and Engineering, 2017, 11(4): 529–536

DOI

Outlines

/