Frontiers of Chemical Science and Engineering >
Carbon-based materials for photodynamic therapy: A mini-review
Received date: 10 May 2018
Accepted date: 05 Jun 2018
Published date: 15 Jun 2019
Copyright
Carbon-based materials have been extensively applied in photodynamic therapy owing to the unique optical characteristics, good biocompatibility and tunable systematic toxicity. This mini-review mainly focuses on the recent application of carbon-based materials including graphene, carbon nanotube, fullerene, corannulene, carbon dot and mesoporous carbon nanoparticle. The carbon-based materials can perform not only as photosensitizers, but also effective carriers for photosensitizers in photodynamic therapy, and its combined treatment.
Di Lu , Ran Tao , Zheng Wang . Carbon-based materials for photodynamic therapy: A mini-review[J]. Frontiers of Chemical Science and Engineering, 2019 , 13(2) : 310 -323 . DOI: 10.1007/s11705-018-1750-7
1 |
Dougherty T J, Henderson B W. Photodynamic therapy. Marcel Dekker, 1992, 1–15
|
2 |
Dougherty T J, Gomer C J, Henderson B W, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic therapy. Journal of the National Cancer Institute, 1998, 90(12): 889–905
|
3 |
Allison R R, Mota H C, Sibata C H. Clinical PD/PDT in North America: An historical review. Photodiagnosis and Photodynamic Therapy, 2004, 1(4): 263–277
|
4 |
Silva T C, Pereira A F F, Exterkate R A, Bagnato V S, Buzalaf M A, Machado M A, Ten Cate J M, Crielaard W, Deng D M. Application of an active attachment model as a high-throughput demineralization biofilm model. Journal of Dentistry, 2012, 40(1): 41–47
|
5 |
Kennedy J C, Pottier R H. Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 1992, 14(4): 275–292 doi:10.1016/1011-1344(92)85108-7
|
6 |
Szygula M, Pietrusa A, Adamek M, Wojciechowski B, Kawczyk-Krupka A, Cebula W, Duda W, Sieron A. Combined treatment of urinary bladder cancer with the use of photodynamic therapy (PDT) and subsequent BCG-therapy: A pilot study. Photodiagnosis and Photodynamic Therapy, 2004, 1(3): 241–246
|
7 |
Lyons M, Phang I, Eljamel S. The effects of PDT in primary malignant brain tumours could be improved by intraoperative radiotherapy. Photodiagnosis and Photodynamic Therapy, 2012, 9(1): 40–45
|
8 |
Date M, Fukuchi K, Namiki Y, Okumura A, Morita S, Takahashi H, Ohura K. Therapeutic effect of photodynamic therapy using PAD-S31 and diode laser on human liver cancer cells. Liver International, 2004, 24(2): 142–148
|
9 |
Algharib A M, Sultan A, Parekh J, Vaz F, Hopper C. Endoluminal tracheal stenting prior to head and neck PDT. Photodiagnosis and Photodynamic Therapy, 2014, 11(3): 444–446
|
10 |
Overholt B F, Panjehpour M, Haydek J M. Photodynamic therapy for Barrett’s esophagus. Gastrointestinal Endoscopy, 1997, 7(2): 207–220
|
11 |
Moghissi K. Endoscopic photodynamic therapy (PDT) for oesophageal cancer. Photodiagnosis and Photodynamic Therapy, 2006, 3(2): 93–95
|
12 |
Ortner M. Photodynamic therapy for cholangiocarcinoma. Journal of Hepato-Biliary-Pancreatic Sciences, 2001, 8(2): 137–139
|
13 |
Berr F, Wiedmann M, Tannapfel A, Halm U, Kohlhaw K R, Schmidt F, Wittekind C, Hauss J, Mössner J. Photodynamic therapy for advanced bile duct cancer: Evidence for improved palliation and extended survival. Hepatology, 2000, 31(2): 291–298
|
14 |
Bown S G, Rogowska A Z, Whitelaw D E, Lees W R, Lovat L B, Ripley P, Jones L, Wyld P, Gillams A, Hatfield A W. Photodynamic therapy for cancer of the pancreas. Gut, 2002, 50(4): 549–557
|
15 |
Qiang Y, Zhang X, Li J, Huang Z. Medical progress. Chinese Medical Journal, 2006, 119(10): 845–857
|
16 |
Kereiakes D J, Szyniszewski A M, Wahr D, Herrmann H C, Simon D I, Rogers C, Kramer P, Shear W, Yeung A C, Shunk K A,
|
17 |
Pollock B, Turner D, Stringer M R, Bojar R A, Goulden V, Stables G I, Cunliffe W J. Topical aminolaevulinic acid-photodynamic therapy for the treatment of acne vulgaris: A study of clinical efficacy and mechanism of action. British Journal of Dermatology, 2004, 151(3): 616–622
|
18 |
Dolmans D E, Fukumura D, Jain R K. Photodynamic therapy for cancer. Nature Reviews: Cancer, 2003, 3(5): 380–387
|
19 |
Ding L. Phthalocyanine based photosensitizers for photodynamic therapy. Chinese Journal of Inorganic Chemistry, 2013, 29(8): 1591–1598
|
20 |
Zhenjun D, Lown J W. Hypocrellins and their use in photosensitization. Photochemistry and Photobiology, 1990, 52(3): 609–616
|
21 |
Cao J, An H, Huang X, Fu G, Zhuang R, Zhu L, Xie J, Zhang F. Monitoring of the tumor response to nano-graphene oxide-mediated photothermal/photodynamic therapy by diffusion-weighted and BOLD MRI. Nanoscale, 2016, 8(19): 10152–10159
|
22 |
Rong P, Yang K, Srivastan A, Kiesewetter D O, Yue X, Wang F, Nie L, Bhirde A, Wang Z, Liu Z,
|
23 |
Ogbodu R O, Ndhundhuma I, Karsten A, Nyokong T. Photodynamic therapy effect of zinc monoamino phthalocyanine-folic acid conjugate adsorbed on single walled carbon nanotubes on melanoma cells. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2015, 137: 1120–1125
|
24 |
Ogbodu R O, Amuhaya E K, Mashazi P, Nyokong T. Photophysical properties of zinc phthalocyanine-uridine single walled carbon nanotube--conjugates. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2015, 149: 231–239
|
25 |
Wang X, Yang C X, Chen J T, Yan X P. A dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy. Analytical Chemistry, 2014, 86(7): 3263–3267
|
26 |
Yu C, Avci P, Canteenwala T, Chiang L Y, Chen B J, Hamblin M R. Photodynamic therapy with hexa (sulfo-n-butyl) [60] fullerene against sarcoma in vitro and in vivo. Journal of Nanoscience and Nanotechnology, 2016, 16(1): 171–181
|
27 |
Jiang B P, Hu L F, Shen X C, Ji S C, Shi Z, Liu C J, Zhang L, Liang H. One-step preparation of a water-soluble carbon nanohorn/phthalocyanine hybrid for dual-modality photothermal and photodynamic therapy. ACS Applied Materials & Interfaces, 2014, 6(20): 18008–18017
|
28 |
Zhang M, Murakami T, Ajima K, Tsuchida K, Sandanayaka A S, Ito O, Iijima S, Yudasaka M. Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(39): 14773–14778
|
29 |
Battigelli A, Ménard M C, Bianco A. Carbon nanomaterials as new tools for immunotherapeutic applications. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2014, 2(37): 6144–6156
|
30 |
Li Q, Hong L, Li H, Liu C. Graphene oxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light. Biosensors & Bioelectronics, 2017, 89(Part 1): 477–482
|
31 |
Shi J, Liu Y, Wang L, Gao J, Zhang J, Yu X, Ma R, Liu R, Zhang Z. A tumoral acidic pH-responsive drug delivery system based on a novel photosensitizer (fullerene) for in vitro and in vivo chemo-photodynamic therapy. Acta Biomaterialia, 2014, 10(3): 1280–1291
|
32 |
Hong G, Diao S, Antaris A L, Dai H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chemical Reviews, 2015, 115(19): 10816–10906
|
33 |
Modugno G, Ménard-Moyon C, Prato M, Bianco A. Carbon nanomaterials combined with metal nanoparticles for theranostic applications. British Journal of Clinical Pharmacology, 2015, 172(4): 975–991
|
34 |
Bitounis D, Ali-Boucetta H, Hong B H, Min D H, Kostarelos K. Prospects and challenges of graphene in biomedical applications. Advanced Materials, 2013, 25(16): 2258–2268
|
35 |
Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chemical Society Reviews, 2013, 42(2): 530–547
|
36 |
Shi S, Yang K, Hong H, Valdovinos H F, Nayak T R, Zhang Y, Theuer C P, Barnhart T E, Liu Z, Cai W. Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials, 2013, 34(12): 3002–3009
|
37 |
Shi X, Gong H, Li Y, Wang C, Cheng L, Liu Z. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials, 2013, 34(20): 4786–4793
|
38 |
Qin J, Chen H, Chang H, Ma Y, Chen Y. Highly reusable and environmentally friendly solid fuel material based on three-dimensional graphene foam. Energy & Fuels, 2016, 30(11): 9876–9881
|
39 |
Kuo W S, Shao Y T, Huang K S, Chou T M, Yang C H, Chen P, Chang C, Huang C, Hsu C, Chou T. Antimicrobial amino-functionalized nitrogen-doped graphene quantum dots for eliminating multidrug-resistant species in dual-modality photodynamic therapy and bioimaging under two-photon excitation. ACS Applied Materials & Interfaces, 2018, 10(17): 14438–14446
|
40 |
Markovic Z M, Ristic B Z, Arsikin K M, Klisic D G, Harhaji-Trajkovic L M, Todorovic-Markovic B M, Kepic D P, Kravic-Stevovic T K, Jovanovic S P, Milenkovic M M,
|
41 |
Ge J, Lan M, Zhou B, Liu W, Guo L, Wang H, Jia Q, Niu G, Huang X, Zhou H,
|
42 |
Liu Y, Xu Y, Geng X, Huo Y, Chen D, Sun K, Zhou G, Chen B, Tao K. Synergistic targeting and efficient photodynamic therapy based on graphene oxide quantum dot-upconversion nanocrystal hybrid nanoparticles. Small, 2018, 14(19): e1800293
|
43 |
Chatterjee D K, Fong L S, Zhang Y. Nanoparticles in photodynamic therapy: An emerging paradigm. Advanced Drug Delivery Reviews, 2008, 60(15): 1627–1637
|
44 |
Chen D, Tao R, Tao K, Chen B, Choi S K, Tian Q, Xu Y, Zhou G, Sun K. Efficacy dependence of photodynamic therapy mediated by upconversion nanoparticles: Subcellular positioning and irradiation productivity. Small, 2017, 13(13): 1602053
|
45 |
Hu D, Zhang J, Gao G, Sheng Z, Cui H, Cai L. Indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites with amplifying photoacoustic and photothermal effects for cancer theranostics. Theranostics, 2016, 6(7): 1043–1052
|
46 |
Zhou L, Zhou L, Wei S, Ge X, Zhou J, Jiang H, Li F, Shen J. Combination of chemotherapy and photodynamic therapy using graphene oxide as drug delivery system. Journal of Photochemistry and Photobiology B: Biology, 2014, 135(3): 7–16
|
47 |
McCallion C, Burthem J, Rees-Unwin K, Golovanov A, Pluen A. Graphene in therapeutics delivery: Problems, solutions and future opportunities. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 104: 235–250
|
48 |
Cho Y, Choi Y. Graphene oxide-photosensitizer conjugate as a redox-responsive theranostic agent. Chemical Communications, 2012, 48(79): 9912–9914
|
49 |
Akbari T, Pourhajibagher M, Hosseini F, Chiniforush N, Gholibegloo E, Khoobi M, Shahabi S, Bahador A. The effect of indocyanine green loaded on a novel nano-graphene oxide for high performance of photodynamic therapy against Enterococcus faecalis. Photodiagnosis and Photodynamic Therapy, 2017, 20: 148–153
|
50 |
Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials, 2012, 33(7): 2206–2214
|
51 |
Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Research, 2012, 5(3): 199–212
|
52 |
Tian B, Wang C, Zhang S, Feng L, Liu Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano, 2011, 5(9): 7000–7009
|
53 |
Sahu A, Choi W I, Lee J H, Tae G. Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials, 2013, 34(26): 6239–6248
|
54 |
Wang Y, Wang H, Liu D, Song S, Wang X, Zhang H. Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy. Biomaterials, 2013, 34(31): 7715–7724
|
55 |
Gollavelli G, Ling Y C. Magnetic and fluorescent graphene for dual modal imaging and single light induced photothermal and photodynamic therapy of cancer cells. Biomaterials, 2014, 35(15): 4499–4507
|
56 |
Hu Z, Li J, Huang Y, Chen L, Li Z. Functionalized graphene/C60 nanohybrid for targeting photothermally enhanced photodynamic therapy. RSC Advances, 2014, 5(1): 654–664
|
57 |
Pu J, Mo Y, Wan S, Wang L. Fabrication of novel graphene-fullerene hybrid lubricating films based on self-assembly for MEMS applications. Chemical Communications, 2014, 50(4): 469–471
|
58 |
Song P, Liu L, Huang G, Yu Y, Guo Q. Largely enhanced thermal and mechanical properties of polymer nanocomposites via incorporating C60@graphene nanocarbon hybrid. Nanotechnology, 2013, 24(50): 505706
|
59 |
Geim A K. Graphene: Status and prospects. Science, 2009, 324(5934): 1530–1534
|
60 |
Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R, Ruoff R S. Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 2010, 22(35): 3906–3924
|
61 |
Sun X, Liu Z, Welsher K, Robinson J T, Goodwin A, Zaric S, Dai H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 2008, 1(3): 203–212
|
62 |
Gulzar A, Xu J, Yang D, Xu L, He F, Gai S, Yang P. Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy. Dalton Transactions, 2018, 47(11): 3931–3939
|
63 |
Falvo M R, Clary G J, Taylor R M II, Chi V, Brooks F P Jr, Washburn S, Superfine R. Bending and buckling of carbon nanotubes under large strain. Nature, 1997, 389(6651): 582–584
|
64 |
Falvo M R, Taylor R M II, Helser A, Chi V, Brooks F P Jr, Washburn S, Superfine R. Nanometre-scale rolling and sliding of carbon nanotubes. Nature, 1999, 397(6716): 236–238
|
65 |
Yazid M N A W M, Sidik N A C, Mamat R, Najafi G. A review of the impact of preparation on stability of carbon nanotube nanofluids. International Communications in Heat and Mass Transfer, 2016, 78: 253–263
|
66 |
Wei B Q, Vajtai R, Jung Y, Ward J, Zhang R, Ramanath G, Ajayan P M. Microfabrication technology: Organized assembly of carbon nanotubes. Nature, 2002, 416(6880): 495–496
|
67 |
Gandra N, Chiu P L, Li W, Anderson Y R, Mitra S, He H, Gao R. Photosensitized singlet oxygen production upon two-photon excitation of single-walled carbon nanotubes and their functionalized analogs. Journal of Physical Chemistry C: Nanomaterials and Interfaces, 2009, 113(13): 5182–8185
|
68 |
Murakami T, Nakatsuji H, Inada M, Matoba Y, Umeyama T, Tsujimoto M, Isoda S, Hashida M, Imahori H. Photodynamic and photothermal effects of semiconducting and metallic-enriched single-walled carbon nanotubes. Journal of the American Chemical Society, 2012, 134(43): 17862–17865
|
69 |
Wang L, Shi J, Liu R, Liu Y, Zhang J, Yu X, Gao J, Zhang C, Zhang Z. Photodynamic effect of functionalized single-walled carbon nanotubes: A potential sensitizer for photodynamic therapy. Nanoscale, 2014, 6(9): 4642–4651
|
70 |
Ali-Boucetta H, Kostarelos K. Carbon nanotubes in medicine & biology—therapy and diagnostics. Advanced Drug Delivery Reviews, 2013, 65(15): 1897–1898
|
71 |
Andersen A J, Robinson J T, Dai H, Hunter A C, Andresen T L, Moghimi S M. Single-walled carbon nanotube surface control of complement recognition and activation. ACS Nano, 2013, 7(2): 1108–1119
|
72 |
Ma X, Zhang L H, Wang L R, Xue X, Sun J H, Wu Y, Zou G, Wu X, Wang P C, Wamer W G,
|
73 |
Staicu A, Smarandache A, Pascu A, Pascu M L. Photophysics of covalently functionalized single wall carbon nanotubes with verteporfin. Applied Surface Science, 2017, 417: 170–174
|
74 |
Aveline B, Hasan T, Redmond R W, Aveline B, Hasan T, Redmond R W. Photophysical and photosensitizing properties of benzoporphyrin derivative monoacid ring A (BPD-MA). Photochemistry and Photobiology, 1994, 59(3): 328–335
|
75 |
Sah U, Sharma K, Chaudhri N, Sankar M, Gopinath P. Antimicrobial photodynamic therapy: Single-walled carbon nanotube (SWCNT)-Porphyrin conjugate for visible light mediated inactivation of Staphylococcus aureus. Colloids and Surfaces B: Biointerfaces, 2018, 162: 108–117
|
76 |
Bachilo S M, Strano M S, Kittrell C, Hauge R H, Smalley R E, Weisman R B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 2002, 298(5602): 2361–2366
|
77 |
Zhang M, Wang J, Wang W, Zhang J, Zhou N. Magnetofluorescent photothermal micelles packaged with GdN@CQDs as photothermal and chemical dual-modal therapeutic agents. Chemical Engineering Journal, 2017, 330: 442–452
|
78 |
Singh R, Torti S V. Carbon nanotubes in hyperthermia therapy. Advanced Drug Delivery Reviews, 2013, 65(15): 2045–2060
|
79 |
Liang C, Diao S, Wang C, Gong H, Liu T, Hong G, Shi X, Dai H, Liu Z. Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Advanced Materials, 2014, 26(32): 5646–5652
|
80 |
Zhang B, Wang H, Shen S, She X, Shi W, Chen J, Zhang Q, Hu Y, Pang Z, Jiang X. Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor. Biomaterials, 2016, 79: 46–55
|
81 |
Murali V S, Mikoryak C, Wang R, Draper R K. Abstract 5374: Effect of carbon nanotube amount and subcellular location on the near infrared (NIR) photothermal ablation of cells. Cancer Research, 2014, 74(19): 5374–5374
|
82 |
Hashida Y, Tanaka H, Zhou S, Kawakami S, Yamashita F, Murakami T, Umeyama T, Imahori H, Hashida M. Photothermal ablation of tumor cells using a single-walled carbon nanotube-peptide composite. Journal of Controlled Release, 2014, 173(1): 59–66
|
83 |
Marangon I, Ménard-Moyon C, Silva A K A, Bianco A, Luciani N, Gazeau F. Synergic mechanisms of photothermal and photodynamic therapies mediated by photosensitizer/carbon nanotube complexes. Carbon, 2016, 97(6): 110–123
|
84 |
Xie L, Wang G, Zhou H, Zhang F, Guo Z, Liu C, Zhang X, Zhu L. Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy. Biomaterials, 2016, 103: 219–228
|
85 |
Zhang M, Wang W, Cui Y, Chu X, Sun B, Zhou N, Shen J. Magnetofluorescent Fe3O4/carbon quantum dots coated single-walled carbon nanotubes as dual-modal targeted imaging and chemo/photodynamic/photothermal triple-modal therapeutic agents. Chemical Engineering Journal, 2018, 338: 526–538
|
86 |
Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E. C60: Buckminsterfullerene. Nature, 1985, 318(6042): 162–163
|
87 |
Krätschmer W, Lamb L D, Fostiropoulos K, Huffman D R. Solid C60: A new form of carbon. Nature, 1990, 347(6291): 354–358
|
88 |
Wilson R J, Meijer G, Bethune D S, Johnson R D, Chambliss D, de Vries M S, Hunziker H E, Wendt H R. Imaging C60 clusters on a surface using a scanning tunnelling microscope. Nature, 1990, 348(6302): 621–622
|
89 |
Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environmental Science & Technology, 2005, 39(5): 1378–1383
|
90 |
Cai X, Hao J, Zhang X, Yu B, Ren J, Luo C, Li Q, Huang Q, Shi X, Li W, Liu J. The polyhydroxylated fullerene derivative C60(OH)24 protects mice from ionizing-radiation-induced immune and mitochondrial dysfunction. Toxicology and Applied Pharmacology, 2010, 243(1): 27–34
|
91 |
Li Z, Pan L L, Zhang F L, Wang Z, Shen Y Y, Zhang Z Z. Preparation and characterization of fullerene (C60) amino acid nanoparticles for liver cancer cell treatment. Journal of Nanoscience and Nanotechnology, 2014, 14(6): 4513–4518
|
92 |
Otake E, Sakuma S, Torii K, Maeda A, Ohi H, Yano S, Morita A. Effect and mechanism of a new photodynamic therapy with glycoconjugated fullerene. Photochemistry and Photobiology, 2010, 86(6): 1356–1363
|
93 |
Arbogast J W, Darmanyan A P, Foote C S, Diederich F N, Whetten R L, Rubin Y, Alvarez M M, Anz S J. Photophysical properties of sixty atom carbon molecule (C60). Journal of Physical Chemistry, 2002, 95(1): 11–12
|
94 |
Saitoh Y, Miyanishi A, Mizuno H, Kato S, Aoshima H, Kokubo K, Miwa N. Super-highly hydroxylated fullerene derivative protects human keratinocytes from UV-induced cell injuries together with the decreases in intracellular ROS generation and DNA damages. Journal of Photochemistry and Photobiology B: Biology, 2011, 102(1): 69–76
|
95 |
Iwamoto Y, Yamakoshi Y. A highly water-soluble C60-NVP copolymer: A potential material for photodynamic therapy. Chemical Communications, 2006, 46(46): 4805–4807
|
96 |
Asada R, Liao F, Saitoh Y, Miwa N. Photodynamic anti-cancer effects of fullerene [C60]-PEG complex on fibrosarcomas preferentially over normal fibroblasts in terms of fullerene uptake and cytotoxicity. Molecular and Cellular Biochemistry, 2014, 390(1–2): 175–184
|
97 |
Li Z, Zhang F L, Pan L L, Zhu X L, Zhang Z Z. Preparation and characterization of injectable Mitoxantrone poly (lactic acid)/fullerene implants for in vivo chemo-photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2015, 149: 51–57
|
98 |
Shi J, Wang B, Wang L, Lu T, Fu Y, Zhang H, Zhang Z. Fullerene (C60)-based tumor-targeting nanoparticles with “off-on” state for enhanced treatment of cancer. Journal of Controlled Release, 2016, 235: 245–258
|
99 |
Wang H, Agarwal P, Zhao S, Yu J, Lu X, He X. Combined cancer therapy with hyaluronan-decorated fullerene-silica multifunctional nanoparticles to target cancer stem-like cells. Biomaterials, 2016, 97: 62–73
|
100 |
Hu Q, Sun W, Lu Y, Bomba H N, Ye Y, Jiang T, Isaacson A J, Gu Z. Tumor microenvironment-mediated construction and deconstruction of extracellular drug-delivery depots. Nano Letters, 2016, 16(2): 1118–1126
|
101 |
Barth W E, Lawton R G. Dibenzo [ghi,mno] fluoranthene. Journal of the American Chemical Society, 1966, 88(2): 380–381
|
102 |
Zoppi L, Martin-Samos L, Baldridge K K. Effect of molecular packing on corannulene-based materials electroluminescence. Journal of the American Chemical Society, 2011, 133(35): 14002–14009
|
103 |
Spisak S N, Zabula A V, Filatov A S, Rogachev A Y, Petrukhina M A. Selective endo and exo binding of alkali metals to corannulene. Angewandte Chemie, 2011, 50(35): 8090–8094
|
104 |
Baldridge K K, Siegel J S. Corannulene-based fullerene fragments C20H10-C50H10: When does a buckybowl become a buckytube? Theoretical Chemistry Accounts, 1997, 97(1–4): 67–71
|
105 |
Lovas F J, McMahon R J, Grabow J U, Schnell M, Mack J, Scott L T, Kuczkowski R L. Interstellar chemistry: A strategy for detecting polycyclic aromatic hydrocarbons in space. Journal of the American Chemical Society, 2005, 127(12): 4345–4349
|
106 |
Liu S, Lu D, Wang X, Ding D, Kong D, Wang Z, Zhao Y. Topology dictates function: Controlled ROS production and mitochondria accumulation via curved carbon materials. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2017, 5(25): 4918–4925
|
107 |
Zhang L, Dong X, Lu D, Liu S, Ding D, Kong D, Fan A, Wang Z, Zhao Y. Controlled ROS production by corannulene: The vehicle makes a difference. Biomaterials Science, 2017, 5(7): 1236–1240
|
108 |
Liu J H, Cao L, LeCroy G E, Wang P, Meziani M J, Dong Y, Liu Y, Luo P G, Sun Y P. Carbon quantum dots for fluorescecne labelling of cells. ACS Applied Materials & Interfaces, 2015, 7(34): 19439–19445
|
109 |
Huang P, Lin J, Wang X, Wang Z, Zhang C, He M, Wang K, Chen F, Li Z, Shen G,
|
110 |
Zheng D W, Li B, Li C X, Fan J X, Lei Q, Li C, Xu Z, Zhang X Z. Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting. ACS Nano, 2016, 10(9): 8715–8722
|
111 |
Fang Y, Lv Y, Gong F, Wu Z, Li X, Zhu H, Zhou L, Yao C, Zhang F, Zheng G,
|
112 |
Xu G J, Liu S J, Niu H, Lv W P, Wu R A. Functionalized mesoporous carbon nanoparticles for targeted chemo-photothermal therapy of cancer cells under near-infrared irradiation. RSC Advances, 2014, 4(64): 33986–33997
|
113 |
Zhou L, Dong K, Chen Z W, Ren J S, Qu X G. Near-infrared absorbing mesoporous carbon nanoparticle as an intelligent drug carrier for dual-triggered synergistic cancer therapy. Carbon, 2015, 82: 479–488
|
114 |
Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761): 622–627
|
115 |
Kang S, Herzberg M, Rodrigues D F, Elimelech M. Antibacterial effects of carbon nanotubes: Size does matter! Langmuir, 2008, 24(13): 6409–6413
|
116 |
Sayes C M, Gobin A M, Ausman K D, Mendez J, West J L, Colvin V L. Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials, 2005, 26(36): 7587–7595
|
117 |
Shin D H, Tam Y T, Kwon G S. Polymeric micelle nanocarriers in cancer research. Frontiers of Chemical Science and Engineering, 2016, 10(3): 348–359
|
118 |
Zhang P, Ye J, Liu E, Sun L, Zhang J, Lee S, Gong J, He H, Yang V C. Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer. Frontiers of Chemical Science and Engineering, 2017, 11(4): 529–536
|
/
〈 | 〉 |