REVIEW ARTICLE

Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water splitting

  • Yueqing Wang ,
  • Jintao Zhang
Expand
  • Key Laboratory for Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China

Received date: 23 Jan 2018

Accepted date: 16 May 2018

Published date: 03 Jan 2019

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Water splitting is a highly promising approach for the generation of sustainable, clean hydrogen energy. Tremendous efforts have been devoted to exploring highly efficient and abundant metal oxide electrocatalysts for oxygen evolution and hydrogen evolution reactions to lower the energy consumption in water splitting. In this review, we summarize the recent advances on the development of metal oxide electrocatalysts with special emphasis on the structural engineering of nanostructures from particle size, composition, crystalline facet, hybrid structure as well as the conductive supports. The special strategies relay on the transformation from the metal organic framework and ion exchange reactions for the preparation of novel metal oxide nanostructures with boosting the catalytic activities are also discussed. The fascinating methods would pave the way for rational design of advanced electrocatalysts for efficient water splitting.

Cite this article

Yueqing Wang , Jintao Zhang . Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water splitting[J]. Frontiers of Chemical Science and Engineering, 2018 , 12(4) : 838 -854 . DOI: 10.1007/s11705-018-1746-3

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21503116). Taishan Scholars Program of Shandong Province (No. tsqn20161004) and the Youth 1000 Talent Program of China are also acknowledged.
1
Morales-Guio C G, Stern L A, Hu X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 2014, 43(18): 6555–6569

DOI PMID

2
Chen W F, Muckerman J T, Fujita E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chemical Communications, 2013, 49(79): 8896–8909

DOI PMID

3
Gong M, Wang D Y, Chen C C, Hwang B J, Dai H. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Research, 2015, 9(1): 28–46

DOI

4
Chen H M, Chen C K, Liu R S, Zhang L, Zhang J, Wilkinson D P. Nano-architecture and material designs for water splitting photoelectrodes. Chemical Society Reviews, 2012, 41(17): 5654–5671

DOI PMID

5
Zeng M, Li Y. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(29): 14942–14962

DOI

6
Chen M, Wang L, Yang H, Zhao S, Xu H, Wu G. Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: A mini review. Journal of Power Sources, 2018, 375: 277–290

DOI

7
Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chemical Society Reviews, 2017, 46(2): 337–365

DOI PMID

8
Tahir M, Pan L, Idrees F, Zhang X, Wang L, Zou J J, Wang Z L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy, 2017, 37: 136–157

DOI

9
Zhao Q, Yan Z, Chen C, Chen J. Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chemical Reviews, 2017, 117(15): 10121–10211

DOI PMID

10
Tian J, Liu Q, Asiri A M, Sun X. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. Journal of the American Chemical Society, 2014, 136(21): 7587–7590

DOI PMID

11
Feng L, Vrubel H, Bensimon M, Hu X. Easily-prepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution. Physical Chemistry Chemical Physics, 2014, 16(13): 5917–5921

DOI PMID

12
Chen P, Xu K, Fang Z, Tong Y, Wu J, Lu X, Peng X, Ding H, Wu C, Xie Y. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angewandte Chemie International Edition, 2015, 54(49): 14710–14714

DOI PMID

13
Zhang Y, Ouyang B, Xu J, Jia G, Chen S, Rawat R S, Fan H J. Rapid synthesis of cobalt nitride nanowires: Highly efficient and low-cost catalysts for oxygen evolution. Angewandte Chemie International Edition, 2016, 55(30): 8670–8674

DOI PMID

14
Kong D, Wang H, Lu Z, Cui Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. Journal of the American Chemical Society, 2014, 136(13): 4897–4900

DOI PMID

15
Gao M R, Liang J X, Zheng Y R, Xu Y F, Jiang J, Gao Q, Li J, Yu S H. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nature Communications, 2015, 6(1): 5982

DOI PMID

16
Vrubel H, Hu X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angewandte Chemie International Edition, 2012, 51(51): 12703–12706

DOI PMID

17
McCrory C C, Jung S, Peters J C, Jaramillo T F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. Journal of the American Chemical Society, 2013, 135(45): 16977–16987

DOI PMID

18
Jirkovský J, Makarova M, Krtil P. Particle size dependence of oxygen evolution reaction on nanocrystalline RuO2 and Ru0.8Co0.2O2-x. Electrochemistry Communications, 2006, 8(9): 1417–1422

DOI

19
Reier T, Oezaslan M, Strasser P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catalysis, 2012, 2(8): 1765–1772

DOI

20
Wang H, Lee H W, Deng Y, Lu Z, Hsu P C, Liu Y, Lin D, Cui Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nature Communications, 2015, 6(1): 7261

DOI PMID

21
Zou X, Su J, Silva R, Goswami A, Sathe B R, Asefa T. Efficient oxygen evolution reaction catalyzed by low-density Ni-doped Co3O4 nanomaterials derived from metal-embedded graphitic C3N4. Chemical Communications, 2013, 49(68): 7522–7524

DOI PMID

22
Friebel D, Louie M W, Bajdich M, Sanwald K E, Cai Y, Wise A M, Cheng M J, Sokaras D, Weng T C, Alonso-Mori R, Davis R C, Bargar J R, Nørskov J K, Nilsson A, Bell A T. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. Journal of the American Chemical Society, 2015, 137(3): 1305–1313

DOI PMID

23
Trotochaud L, Young S L, Ranney J K, Boettcher S W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. Journal of the American Chemical Society, 2014, 136(18): 6744–6753

DOI PMID

24
Tang T, Jiang W J, Niu S, Liu N, Luo H, Chen Y Y, Jin S F, Gao F, Wan L J, Hu J S. Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. Journal of the American Chemical Society, 2017, 139(24): 8320–8328

DOI PMID

25
Yu J, Wang Q, O’Hare D, Sun L. Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chemical Society Reviews, 2017, 46(19): 5950–5974

DOI PMID

26
Quan Z, Wang Y, Fang J. High-index faceted noble metal nanocrystals. Accounts of Chemical Research, 2013, 46(2): 191–202

DOI PMID

27
Liu G, Yang H G, Pan J, Yang Y Q, Lu G Q, Cheng H M. Titanium dioxide crystals with tailored facets. Chemical Reviews, 2014, 114(19): 9559–9612

DOI PMID

28
Falkowski J M, Concannon N M, Yan B, Surendranath Y. Heazlewoodite, Ni3S2: A potent catalyst for oxygen reduction to water under benign conditions. Journal of the American Chemical Society, 2015, 137(25): 7978–7981

DOI PMID

29
Feng L L, Yu G, Wu Y, Li G D, Li H, Sun Y, Asefa T, Chen W, Zou X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. Journal of the American Chemical Society, 2015, 137(44): 14023–14026

DOI PMID

30
Nai J, Kang J, Guo L. Tailoring the shape of amorphous nanomaterials: Recent developments and applications. Science China Materials, 2015, 58(1): 44–59

DOI

31
Mas-Ballesté R, Gómez-Navarro C, Gómez-Herrero J, Zamora F. 2D materials: To graphene and beyond. Nanoscale, 2011, 3(1): 20–30

DOI PMID

32
Huang J, Chen J, Yao T, He J, Jiang S, Sun Z, Liu Q, Cheng W, Hu F, Jiang Y, Pan Z, Wei S. CoOOH nanosheets with high mass activity for water oxidation. Angewandte Chemie International Edition, 2015, 54(30): 8722–8727

DOI PMID

33
Sun Y, Gao S, Xie Y. Atomically-thick two-dimensional crystals: Electronic structure regulation and energy device construction. Chemical Society Reviews, 2014, 43(2): 530–546

DOI PMID

34
Gao X, Zhang H, Li Q, Yu X, Hong Z, Zhang X, Liang C, Lin Z. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angewandte Chemie International Edition, 2016, 55(21): 6290–6294

DOI PMID

35
Sun M H, Huang S Z, Chen L H, Li Y, Yang X Y, Yuan Z Y, Su B L. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chemical Society Reviews, 2016, 45(12): 3479–3563

DOI PMID

36
Feng J X, Xu H, Dong Y T, Ye S H, Tong Y X, Li G R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angewandte Chemie International Edition, 2016, 55(11): 3694–3698

DOI PMID

37
Feng J X, Ye S H, Xu H, Tong Y X, Li G R. Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction. Advanced Materials, 2016, 28(23): 4698–4703

DOI PMID

38
Xiao C, Li Y, Lu X, Zhao C. Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting. Advanced Functional Materials, 2016, 26(20): 3515–3523

DOI

39
Xu L, Jiang Q, Xiao Z, Li X, Huo J, Wang S, Dai L. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angewandte Chemie International Edition, 2016, 55(17): 5277–5281

DOI PMID

40
Zhao Y, Chang C, Teng F, Zhao Y, Chen G, Shi R, Waterhouse G I N, Huang W, Zhang T. Defect-engineered ultrathin d-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting. Advanced Energy Materials, 2017, 7(18): 1700005

DOI

41
Han L, Yu X Y, Lou X W. Formation of prussian-blue-analog nanocages via a direct etching method and their conversion into Ni-Co-mixed oxide for enhanced oxygen evolution. Advanced Materials, 2016, 28(23): 4601–4605

DOI PMID

42
Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Metal-organic framework materials as catalysts. Chemical Society Reviews, 2009, 38(5): 1450–1459

DOI PMID

43
Nai J, Lu Y, Yu L, Wang X, Lou X W D. Formation of Ni-Fe mixed diselenide nanocages as a superior oxygen evolution electrocatalyst. Advanced Materials, 2017, 29(41): 1703870

DOI PMID

44
Yu X Y, Yu L, Wu H B, Lou X W. Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angewandte Chemie International Edition, 2015, 54(18): 5331–5335

DOI PMID

45
Zhang L, Wu H B, Lou X W. Metal-organic-frameworks-derived general formation of hollow structures with high complexity. Journal of the American Chemical Society, 2013, 135(29): 10664–10672

DOI PMID

46
Tan C F, Azmansah S A, Zhu H, Xu Q H, Ho G W. Spontaneous electroless galvanic cell deposition of 3D hierarchical and interlaced S-M-S heterostructures. Advanced Materials, 2017, 29(1): 1604417

DOI PMID

47
Wang Y, Zhang B, Pan W, Ma H, Zhang J. 3D porous Nickel-Cobalt nitrides supported on nickel foam as efficient electrocatalysts for overall water splitting. ChemSusChem, 2017, 10(21): 4170–4177

DOI PMID

48
Wang J, Tan C F, Zhu T, Ho G W, WeiHo G. Topotactic consolidation of monocrystalline CoZn hydroxides for advanced oxygen evolution electrodes. Angewandte Chemie, 2016, 128(35): 10482–10486

DOI

49
Hou Y, Lohe M R, Zhang J, Liu S, Zhuang X, Feng X. Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: An efficient 3D electrode for overall water splitting. Energy & Environmental Science, 2016, 9(2): 478–483

DOI

50
Maiyalagan T, Jarvis K A, Therese S, Ferreira P J, Manthiram A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nature Communications, 2014, 5(1): 3949

DOI PMID

51
Li H, Shao Y, Su Y, Gao Y, Wang X. Vapor-phase atomic layer deposition of nickel sulfide and its application for efficient oxygen-evolution electrocatalysis. Chemistry of Materials, 2016, 28(4): 1155–1164

DOI

52
Yu X Y, Feng Y, Guan B, Lou X W, Paik U. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy & Environmental Science, 2016, 9(4): 1246–1250

DOI

53
Dong Q, Wang Q, Dai Z, Qiu H, Dong X. MOF-derived Zn-doped CoSe2 as an efficient and stable free-standing catalyst for oxygen evolution reaction. ACS Applied Materials & Interfaces, 2016, 8(40): 26902–26907

DOI PMID

54
Barman B K, Nanda K K. Prussian blue as a single precursor for synthesis of Fe/Fe3C encapsulated N-doped graphitic nanostructures as bi-functional catalysts. Green Chemistry, 2016, 18(2): 427–432

DOI

55
Ganesan P, Prabu M, Sanetuntikul J, Shanmugam S. Cobalt sulfide nanoparticles grown on nitrogen and sulfur codoped graphene oxide: An efficient electrocatalyst for oxygen reduction and evolution reactions. ACS Catalysis, 2015, 5(6): 3625–3637

DOI

56
Trotochaud L, Ranney J K, Williams K N, Boettcher S W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. Journal of the American Chemical Society, 2012, 134(41): 17253–17261

DOI PMID

57
Wang Y J, Zhao N, Fang B, Li H, Bi X T, Wang H. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chemical Reviews, 2015, 115(9): 3433–3467

DOI PMID

58
Chabot V, Higgins D, Yu A, Xiao X, Chen Z, Zhang J. A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment. Energy & Environmental Science, 2014, 7(5): 1564–1596

DOI

59
Thostensona E T, Renb Z, Choua T W. Advances in the science and technology of carbon nanotubes and their composites: A review. Composites Science and Technology, 2001, 61(13): 1899–1912

DOI

60
Allen M J, Tung V C, Kaner R B. Honeycomb carbon: A review of graphene. Chemical Reviews, 2010, 110(1): 132–145

DOI PMID

61
Lu X, Zhao C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nature Communications, 2015, 6(1): 6616

DOI PMID

62
Wei L, Goh K, Birer Ö, Karahan H E, Chang J, Zhai S, Chen X, Chen Y. A hierarchically porous nickel-copper phosphide nano-foam for efficient electrochemical splitting of water. Nanoscale, 2017, 9(13): 4401–4408

DOI PMID

63
Gong M, Li Y, Wang H, Liang Y, Wu J Z, Zhou J, Wang J, Regier T, Wei F, Dai H. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. Journal of the American Chemical Society, 2013, 135(23): 8452–8455

DOI PMID

64
Gong M, Zhou W, Tsai M C, Zhou J, Guan M, Lin M C, Zhang B, Hu Y, Wang D Y, Yang J, . Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nature Communications, 2014, 5(1): 4695

DOI PMID

65
Zhou W, Jia J, Lu J, Yang L, Houb D, Li G, Chen S. Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy, 2016, 28: 29–43

DOI

66
Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 2011, 133(19): 7296–7299

DOI PMID

67
Chang Y H, Lin C T, Chen T Y, Hsu C L, Lee Y H, Zhang W, Wei K H, Li L J. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Advanced Materials, 2013, 25(5): 756–760

DOI PMID

68
Guan C, Liu X, Ren W, Li X, Cheng C, Wang J. Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Advanced Energy Materials, 2017, 7(12): 1602391

DOI

69
Pu Z, Liu Q, Jiang P, Asiri A M, Obaid A Y, Sun X. CoP nanosheet arrays supported on a ti plate: An efficient cathode for electrochemical hydrogen evolution. Chemistry of Materials, 2014, 26(15): 4326–4329

DOI

70
Jiang P, Liu Q, Liang Y, Tian J, Asiri A M, Sun X. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angewandte Chemie International Edition, 2014, 53(47): 12855–12859

DOI PMID

71
Ma T Y, Dai S, Jaroniec M, Qiao S Z. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. Journal of the American Chemical Society, 2014, 136(39): 13925–13931

DOI PMID

72
Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015, 44(15): 5148–5180

DOI PMID

Outlines

/