REVIEW ARTICLE

Engineering operando methodology: Understanding catalysis in time and space

  • Raquel Portela ,
  • Susana Perez-Ferreras ,
  • Ana Serrano-Lotina ,
  • Miguel A. Bañares
Expand
  • Instituto de Catálisis y Petroleoquímica, ICP-CSIC, Marie Curie 2, Madrid, Spain

Received date: 16 Feb 2018

Accepted date: 21 Apr 2018

Published date: 18 Sep 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

The term operando was coined at the beginning of this century to gather the growing efforts devoted to establish structure-activity relationships by simultaneously characterizing a catalyst performance and the relevant surface chemistry during genuine catalytic operation. This approach is now widespread and consolidated; it has become an increasingly complex but efficient junction where spectroscopy, materials science, catalysis and engineering meet. While for some characterization techniques kinetically relevant reactor cells with good resolution are recently developing, the knowledge gained with magnetic resonance and X-ray and vibrational spectroscopy studies is already huge and the scope of operando methodology with these techniques is recently expanding from studies with small amounts of powdered solids to more industrially relevant catalytic systems. Engineering catalysis implies larger physical domains, and thus all sort of gradients. Space- and time- resolved multi-technique characterization of both the solid and fluid phases involved in heterogeneous catalytic reactions (including temperature data) is key to map processes from different perspectives, which allows taking into account existing heterogeneities at different scales and facing up- and down-scaling for applications ranging from microstructured reactors to industrial-like macroreactors (operating with shaped catalytic bodies and/or in integral regime). This work reviews how operando methodology is evolving toward engineered reaction systems.

Cite this article

Raquel Portela , Susana Perez-Ferreras , Ana Serrano-Lotina , Miguel A. Bañares . Engineering operando methodology: Understanding catalysis in time and space[J]. Frontiers of Chemical Science and Engineering, 2018 , 12(3) : 509 -536 . DOI: 10.1007/s11705-018-1740-9

Acknowledgments

This work was supported by Spanish Ministry grants CTQ2014-57578-R ‘LT-NOx’ and CTM2017-82335-R ‘RIEN2O’; and Comunidad de Madrid programme 2013/MAE2985 ‘ALCCONES.’
1
Mitchell S, Michels N L, Pérez-Ramírez J. From powder to technical body: the undervalued science of catalyst scale up. Chemical Society Reviews, 2013, 42(14): 6094–6112

DOI PMID

2
Boger T, Heibel A K, Sorensen C M. Monolithic catalysts for the chemical industry. Industrial & Engineering Chemistry Research, 2004, 43(16): 4602–4611

DOI

3
Scheffler F, Claus P, Schimpf S, Lucas M, Scheffler M. Heterogeneously catalyzed processes with porous cellular ceramic monoliths. Cellular ceramics. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2006, 454–483

4
Tronconi E, Groppi G, Visconti C G. Structured catalysts for non-adiabatic applications. Current Opinion in Chemical Engineering, 2014, 5: 55–67

DOI

5
Kreutzer M T, Kapteijn F, Moulijn J A, Heiszwolf J J. Multiphase monolith reactors: Chemical reaction engineering of segmented flow in microchannels. Chemical Engineering Science, 2005, 60(22): 5895–5916

DOI

6
Twigg M V, Richardson J T. Fundamentals and applications of structured ceramic foam catalysts. Industrial & Engineering Chemistry Research, 2007, 46(12): 4166–4177

DOI

7
Jähnisch K, Hessel V, Löwe H, Baerns M. Chemistry in microstructured reactors. Angewandte Chemie International Edition, 2004, 43(4): 406–446

DOI PMID

8
Yue J, Schouten J C, Nijhuis T A. Integration of microreactors with spectroscopic detection for online reaction monitoring and catalyst characterization. Industrial & Engineering Chemistry Research, 2012, 51(45): 14583–14609

DOI

9
Kestenbaum H, Lange de Oliveira A, Schmidt W, Schüth F, Ehrfeld W, Gebauer K, Löwe H, Richter T, Lebiedz D, Untiedt I, Züchner H. Silver-catalyzed oxidation of ethylene to ethylene oxide in a microreaction system. Industrial & Engineering Chemistry Research, 2002, 41(4): 710–719

DOI

10
Inoue T, Schmidt M A, Jensen K F. Microfabricated multiphase reactors for the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Industrial & Engineering Chemistry Research, 2007, 46(4): 1153–1160

DOI

11
Yoshida J, Nagaki A, Iwasaki T, Suga S. Enhancement of chemical selectivity by microreactors. Chemical Engineering & Technology, 2005, 28(3): 259–266

DOI

12
Al-Rifai N, Cao E, Dua V, Gavriilidis A. Microreaction technology aided catalytic process design. Current Opinion in Chemical Engineering, 2013, 2(3): 338–345

DOI

13
Ufer A, Sudhoff D, Mescher A, Agar D W. Suspension catalysis in a liquid-liquid capillary microreactor. Chemical Engineering Journal, 2011, 167(2): 468–474

DOI

14
Martin A J, Mitchell S, Kunze K, Weston K C, Pérez-Ramírez J. Visualising compositional heterogeneity during the scale up of multicomponent zeolite bodies. Materials Horizons, 2017, 4(5): 857–861

DOI

15
Rasmussen S B, López-Medina R, Portela R, Mikolajska E, Daturi M, Avila P, Bañares M A. Shaping up operando spectroscopy: Raman characterization of a working honeycomb monolith. Catalysis Science & Technology, 2015, 5(11): 4942–4945

DOI

16
Hunger M, Weitkamp J. In situ IR, NMR, EPR, and UV/Vis spectroscopy: Tools for new insight into the mechanisms of heterogeneous catalysis. Angewandte Chemie International Edition, 2001, 40(16): 2954–2971

DOI PMID

17
Urakawa A. Trends and advances in operando methodology. Current Opinion in Chemical Engineering, 2016, 12: 31–36

DOI

18
Urakawa A, Maeda N, Baiker A. Space- and time-resolved combined DRIFT and Raman spectroscopy: Monitoring dynamic surface and bulk processes during NOx storage reduction. Angewandte Chemie International Edition, 2008, 47(48): 9256–9259

DOI PMID

19
Burch R. In situ methods in catalysis—Proceedings of the surface reactivity and catalysis group meeting of the royal society of chemistry. Catalysis Today, 1991, 9(1–2)

20
Clausen B S, Topsøe H, Frahm R. Application of combined X-ray diffraction and absorption techniques for in situ catalyst characterization. In: Eley D D, Haag W O, Gates B, Knözinger H, eds. Advances in Catalysis. Massachusetts: Academic Press, 1998, 315–344

21
Dumesic J A, Topsøe H. Mössbauer Spectroscopy Applications to Heterogeneous Catalysis. In: Eley D D, Pines H, Weisz P B, eds. Advances in Catalysis. Massachusetts: Academic Press, 1977, 121–246

22
Bañares M A. Operando spectroscopy: The knowledge bridge to assessing structure–performance relationships in catalyst nanoparticles. Advanced Materials, 2011, 23(44): 5293–5301

DOI PMID

23
Topsøe H. Developments in operando studies and in situ characterization of heterogeneous catalysts. Journal of Catalysis, 2003, 216(1–2): 155–164

DOI

24
Topsøe H. In situ characterization of catalysts. In: Corma A, Melo F V, Mendioroz S, Fierro J L G, eds. 12th International Congress on Catalysis, Proceedings of the 12th ICC. Amsterdam: Elsevier, 2000, 1–21

25
Meunier F C. The design and testing of kinetically-appropriate operando spectroscopic cells for investigating heterogeneous catalytic reactions. Chemical Society Reviews, 2010, 39(12): 4602–4614

DOI PMID

26
Weckhuysen B M. Preface: Recent advances in the in-situ characterization of heterogeneous catalysts. Chemical Society Reviews, 2010, 39(12): 4557–4559

DOI

27
Weckhuysen B M. Snapshots of a working catalyst: Possibilities and limitations of in situ spectroscopy in the field of heterogeneous catalysis. Chemical Communications, 2002, 2(2): 97–110

DOI PMID

28
Bañares M A, Guerrero-Pérez M O, Fierro J L G, Garcia Cortez G. Raman spectroscopy during catalytic operations with on-line activity measurement (operando spectroscopy): A method for understanding the active centres of cations supported on porous materials. Journal of Materials Chemistry, 2002, 12(11): 3337–3342

DOI

29
Calvino-Casilda V, Banares M A. Recent advances in imaging and monitoring of heterogeneous catalysts with Raman spectroscopy. Catalysis, 2012, 24: 1–47

DOI

30
Banares M A. In situ to operando spectroscopy: From proof of concept to industrial application. Topics in Catalysis, 2009, 52(10): 1301–1302

DOI

31
Niemantsverdriet J W. Spectroscopy In Catalysis: An Introduction. 3rd ed. New Jersey: Wiley, 2007

32
Somorjai G A. In situ surface science studies of catalytic reactions. CATTech, 1999, 3(1): 84–97

33
Bennici S M, Vogelaar B M, Nijhuis T A, Weckhuysen B M. Real-time control of a catalytic solid in a fixed-bed reactor based on in situ spectroscopy. Angewandte Chemie International Edition, 2007, 46(28): 5412–5416

DOI PMID

34
Brückner A, Kondratenko E. Simultaneous operando EPR/UV-vis/laser-Raman spectroscopy—A powerful tool for monitoring transition metal oxide catalysts during reaction. Catalysis Today, 2006, 113(1–2): 16–24

DOI

35
Bañares M A, Mestl G. Structural characterization of catalysts by operando Raman spectroscopy. In-situ Characterization of Heterogeneous Catalysts, 2013, 267–292

36
Balboni M L. Process analytical technology: Concepts and principles. Pharmaceutical Technology, 2003, 27(10): 54

37
Vogt C, Weckhuysen B M, Ruiz-Martínez J. Effect of feedstock and catalyst impurities on the methanol-to-olefin reaction over H-SAPO-34. ChemCatChem, 2017, 9(1): 183–194

DOI PMID

38
Jentoft F C. Chapter 3. Ultraviolet-visible-near infrared spectroscopy in catalysis: Theory, experiment, analysis, and application under reaction conditions. Advances in Catalysis, 2009, 52: 129–211

DOI

39
Rasmussen S B, Bañares M A, Bazin P, Due-Hansen J, Ávila P, Daturi M. Monitoring catalysts at work in their final form: Spectroscopic investigations on a monolithic catalyst. Physical Chemistry Chemical Physics, 2012, 14(7): 2171–2177

DOI PMID

40
Ferraro J R, Nakamoto K, Brown C W. Introductory Raman spectroscopy. In: Nakamoto K, Brown C W, eds. Introductory Raman spectroscopy. 2nd ed. Massachusetts: Academic Press, 2003, 1–434

41
Brückner A. Electron paramagnetic resonance: A powerful tool for monitoring working catalysts. Advances in Catalysis, 2007, 51: 265–308

DOI

42
Ivanova I I, Kolyagin Y G. Impact of in situ MAS NMR techniques to the understanding of the mechanisms of zeolite catalyzed reactions. Chemical Society Reviews, 2010, 39(12): 5018–5050

DOI PMID

43
Blasco T. Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy. Chemical Society Reviews, 2010, 39(12): 4685–4702

DOI PMID

44
Beale A M, Jacques S D M, Weckhuysen B M. Chemical imaging of catalytic solids with synchrotron radiation. Chemical Society Reviews, 2010, 39(12): 4656–4672

DOI PMID

45
Newton M A, van Beek W. Combining synchrotron-based X-ray techniques with vibrational spectroscopies for the in situ study of heterogeneous catalysts: A view from a bridge. Chemical Society Reviews, 2010, 39(12): 4845–4863

DOI PMID

46
Senyshyn A, Mühlbauer M J, Nikolowski K, Pirling T, Ehrenberg H. “In-operando” neutron scattering studies on Li-ion batteries. Journal of Power Sources, 2012, 203: 126–129

DOI

47
Lennon D, Parker S F. Inelastic neutron scattering studies of methyl chloride synthesis over alumina. Accounts of Chemical Research, 2014, 47(4): 1220–1227

DOI PMID

48
Frenken J, Groot I. Operando Research in Heterogeneous Catalysis. Berlin: Springer International Publishing, 2017

49
Han B, Stoerzinger K A, Tileli V, Gamalski A D, Stach E A, Shao-Horn Y. Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution. Nature Materials, 2017, 16(1): 121–126

DOI PMID

50
Stavitski E, Weckhuysen B M. Infrared and Raman imaging of heterogeneous catalysts. Chemical Society Reviews, 2010, 39(12): 4615–4625

DOI PMID

51
Weckhuysen B M. Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angewandte Chemie International Edition, 2009, 48(27): 4910–4943

DOI PMID

52
Buurmans I L C, Weckhuysen B M. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nature Chemistry, 2012, 4(11): 873–886

DOI PMID

53
Morgan K, Touitou J, Choi J S, Coney C, Hardacre C, Pihl J A, Stere C E, Kim M Y, Stewart C, Goguet A, Partridge W P. Evolution and enabling capabilities of spatially resolved techniques for the characterization of heterogeneously catalyzed reactions. ACS Catalysis, 2016, 6(2): 1356–1381

DOI

54
Sattler J J H B, Mens A M, Weckhuysen B M. Real-time quantitative operando raman spectroscopy of a CrOx/Al2O3 propane dehydrogenation catalyst in a pilot-scale reactor. ChemCatChem, 2014, 6(11): 3139–3145

DOI

55
Guerrero-Pérez M O, Bañares M A. Operando Raman study of alumina-supported Sb-V-O catalyst during propane ammoxidation to acrylonitrile with on-line activity measurement. Chemical Communications, 2002, 12(12): 1292–1293

DOI PMID

56
Bañares M A, Wachs I E. Molecular structures of supported metal oxide catalysts under different environments. Journal of Raman Spectroscopy, 2002, 33(5): 359–380

DOI

57
Wachs I E. International congress on operando spectroscopy: Fundamental and technical aspects of spectroscopy of catalysts under working conditions. Catalysis Communications, 2003, 4(11): 567–570

DOI

58
Chakrabarti A, Ford M E, Gregory D, Hu R, Keturakis C J, Lwin S, Tang Y, Yang Z, Zhu M, Bañares M A, Wachs I E. A decade+ of operando spectroscopy studies. Catalysis Today, 2017, 283: 27–53

DOI

59
Thomas S, Marie O, Bazin P, Lietti L, Visconti C G, Corbetta M, Manenti F, Daturi M. Modelling a reactor cell for operando IR studies: From qualitative to fully quantitative kinetic investigations. Catalysis Today, 2017, 283: 176–184

DOI

60
Thibault-Starzyk F, Seguin E, Thomas S, Daturi M, Arnolds H, King D A. Real-time infrared detection of cyanide flip on silver-alumina NOx removal catalyst. Science, 2009, 324(5930): 1048–1051

DOI PMID

61
Krivanek O L, Lovejoy T C, Dellby N, Aoki T, Carpenter R W, Rez P, Soignard E, Zhu J, Batson P E, Lagos M J, Egerton R F, Crozier P A. Vibrational spectroscopy in the electron microscope. Nature, 2014, 514(7521): 209–212

DOI PMID

62
Choi J S, Partridge W P, Daw C S. Spatially resolved in situ measurements of transient species breakthrough during cyclic, low-temperature regeneration of a monolithic Pt/K/Al2O3 NOx storage-reduction catalyst. Applied Catalysis A: General, 2005, 293(1–2): 24–40

DOI

63
Nguyen H, Peng P Y, Luss D, Harold M P. Assessing intrusion by the capillary during spatially resolved mass spectrometry measurement. Chemical Engineering Journal, 2017, 307: 845–859

DOI

64
Bentrup U. Combining in situ characterization methods in one set-up: Looking with more eyes into the intricate chemistry of the synthesis and working of heterogeneous catalysts. Chemical Society Reviews, 2010, 39(12): 4718–4730

DOI PMID

65
Wachs I E, Routray K. Catalysis science of bulk mixed oxides. ACS Catalysis, 2012, 2(6): 1235–1246

DOI

66
Wachs I E. Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catalysis Today, 2005, 100(1): 79–94

DOI

67
Tran L, Bañares M A, Rallo R. Modelling the Toxicity of Nanoparticles. Berlin: Springer International Publishing, 2017

68
Guerrero-Pérez M O, Bañares M A. From conventional in situ to operando studies in Raman spectroscopy. Catalysis Today, 2006, 113(1–2): 48–57

DOI

69
Bañares M A, Khatib S J. Structure-activity relationships in alumina-supported molybdena-vanadia catalysts for propane oxidative dehydrogenation. Catalysis Today, 2004, 96(4): 251–257

DOI

70
Martínez-Huerta M V, Deo G, Fierro J L G, Bañares M A. Operando Raman-GC study on the structure-activity relationships in V5+/CeO2 catalyst for ethane oxidative dehydrogenation: The formation of CeVO4. Journal of Physical Chemistry C, 2008, 112(30): 11441–11447

DOI

71
Banares M A, Dauphin L, Calvoperez V, Fehlner T P, Wolf E E. Activity and characterization of self-supported model catalysts derived from cobalt-based clusters of clusters: Hydrogenation of 1,3-butadiene. Journal of Catalysis, 1995, 152(2): 396–409

DOI

72
Bañares M A, Dauphin L, Lei X, Cen W, Shang M, Wolf E E, Fehlner T P. Effect of precursor core structure on the hydrogenation of 1,3-butadiene catalyzed by cluster-derived model catalysts. Chemistry of Materials, 1995, 7(3): 553–561

DOI

73
Bañares M, Patil A N, Fehlner T P, Wolf E E. Novel cluster-derived catalysts for the selective hydrogenation of crotonaldehyde. Catalysis Letters, 1995, 34(3–4): 251–258

DOI

74
Deutschmann O, Schwiedemoch R, Maier L I, Chatterjee D. Natural gas conversion in monolithic catalysts: Interaction of chemical reactions and transport phenomena. In: Iglesia E, Spivey J J, Fleisch T H, eds. Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 2001, 251–258

75
Meunier F, Reid D, Goguet A, Shekhtman S, Hardacre C, Burch R, Deng W, Flytzanistephanopoulos M. Quantitative analysis of the reactivity of formate species seen by DRIFTS over a Au/Ce(La)O2 water-gas shift catalyst: First unambiguous evidence of the minority role of formates as reaction intermediates. Journal of Catalysis, 2007, 247(2): 277–287

DOI

76
Rivallan M, Seguin E, Thomas S, Lepage M, Takagi N, Hirata H, Thibault-Starzyk F. Platinum sintering on H-ZSM-5 followed by chemometrics of CO adsorption and 2D pressure-jump IR spectroscopy of adsorbed species. Angewandte Chemie International Edition, 2010, 49(4): 785–789

DOI PMID

77
Bare S R, Ressler T. Characterization of catalysts in reactive atmospheres by X-ray absorption spectroscopy. In: Gates B, Knoezinger H, Jentoft F, eds. Advances in Catalysis. Massachusetts: Academic Press, 2009, 339–465

78
Doronkin D E, Lichtenberg H, Grunwaldt J D. Cell designs for in situ and operando studies. In: Iwasawa Y, Asakura K, Tada M, eds. XAFS Techniques for Catalysts, Nanomaterials, and Surfaces Techniques for Catalysts, Nanomaterials, and Surfaces. Berlin: Springer International Publishing, 2017, 75–89

79
Carías-Henriquez A, Pietrzyk S, Dujardin C. Modelling and optimization of IR cell devoted to in situ and operando characterization of catalysts. Catalysis Today, 2013, 205(Supp. C): 134–140

DOI

80
Burcham L J, Badlani M, Wachs I E. The origin of the ligand effect in metal oxide catalysts: Novel fixed-bed in situ infrared and kinetic studies during methanol oxidation. Journal of Catalysis, 2001, 203(1): 104–121

DOI

81
Rasmussen S B, Perez-Ferreras S, Bañares M A, Bazin P, Daturi M. Does pelletizing catalysts influence the efficiency number of activity measurements? Spectrochemical engineering considerations for an accurate operando study. ACS Catalysis, 2012, 3(1): 86–94

DOI

82
Lisi L, Pirone R, Russo G, Stanzione V. Cu-ZSM5 based monolith reactors for NO decomposition. Chemical Engineering Journal, 2009, 154(1): 341–347

DOI

83
Gibson E K, Zandbergen M W, Jacques S D M, Biao C, Cernik R J, O’Brien M G, Di Michiel M, Weckhuysen B M, Beale A M. Noninvasive spatiotemporal profiling of the processes of impregnation and drying within mMo/Al2O3 catalyst bodies by a combination of X-ray absorption tomography and diagonal offset Raman spectroscopy. ACS Catalysis, 2013, 3(3): 339–347

DOI

84
Ferri D, Elsener M, Kröcher O. Methane oxidation over a honeycomb Pd-only three-way catalyst under static and periodic operation. Applied Catalysis B: Environmental, 2018, 220: 67–77

DOI

85
Malpartida I, Marie O, Bazin P, Daturi M, Jeandel X. An operando IR study of the unburnt HC effect on the activity of a commercial automotive catalyst for NH3-SCR. Applied Catalysis B: Environmental, 2011, 102(1): 190–200

DOI

86
Ávila P, Montes M, Miró E E. Monolithic reactors for environmental applications: A review on preparation technologies. Chemical Engineering Journal, 2005, 109(1): 11–36

DOI

87
Chen J, Yang H, Wang N, Ring Z, Dabros T. Mathematical modeling of monolith catalysts and reactors for gas phase reactions. Applied Catalysis A: General, 2008, 345(1): 1–11

DOI

88
Grunwaldt J D, Wagner J B, Dunin-Borkowski R E. Imaging catalysts at work: A hierarchical approach from the macro- to the meso- and nano-scale. ChemCatChem, 2013, 5(1): 62–80

DOI

89
Goguet A, Stewart C, Touitou J, Morgan K. In situ spatially resolved techniques for the investigation of packed bed catalytic reactors: Current status and future outlook of Spaci-FB. Advances in Chemical Engineering, 2017, 50: 131–160

DOI

90
Rasmussen S B, Portela R, Bazin P, Ávila P, Bañares M A, Daturi M. Transient operando study on the NH3/NH4+ interplay in V-SCR monolithic catalysts. Applied Catalysis B: Environmental, 2018, 224: 109–115

DOI

91
Grunwaldt J D, Kimmerle B, Baiker A, Boye P, Schroer C G, Glatzel P, Borca C N, Beckmann F. Catalysts at work: From integral to spatially resolved X-ray absorption spectroscopy. Catalysis Today, 2009, 145(3–4): 267–278

DOI

92
van de Water L G A, Bergwerff J A, Nijhuis T A, de Jong K P, Weckhuysen B M. UV-Vis microspectroscopy: probing the initial stages of supported metal oxide catalyst preparation. Journal of the American Chemical Society, 2005, 127(14): 5024–5025

DOI PMID

93
Fait M J G, Abdallah R, Linke D, Kondratenko E V, Rodemerck U. A novel multi-channel reactor system combined with operando UV/vis diffuse reflectance spectroscopy: Proof of principle. Catalysis Today, 2009, 142(3–4): 196–201

DOI

94
García-Casado M, Prieto J, Vico-Ruiz E, Lozano-Diz E, Goberna-Selma C, Bañares M A. High-throughput operando Raman-quadrupole mass spectrometer (QMS) system to screen catalytic systems. Applied Spectroscopy, 2014, 68(1): 69–78

DOI PMID

95
Zandbergen M W, Jacques S D M, Weckhuysen B M, Beale A M. Chemical probing within catalyst bodies by diagonal offset Raman spectroscopy. Angewandte Chemie International Edition, 2012, 51(4): 957–960

DOI PMID

96
van Schrojenstein Lantman E M, Deckert-Gaudig T, Mank A J G, Deckert V, Weckhuysen B M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nature Nanotechnology, 2012, 7(9): 583–586

DOI PMID

97
Li G, Hu D, Xia G, White J M, Zhang C. High throughput operando studies using Fourier transform infrared imaging and Raman spectroscopy. Review of Scientific Instruments, 2008, 79(7): 074101

DOI PMID

98
Grunwaldt J D, Schroer C G. Hard and soft X-ray microscopy and tomography in catalysis: Bridging the different time and length scales. Chemical Society Reviews, 2010, 39(12): 4741–4753

DOI PMID

99
Jacques S D, Di Michiel M, Kimber S A, Yang X, Cernik R J, Beale A M, Billinge S J. Pair distribution function computed tomography. Nature Communications, 2013, 4(1): 2536

DOI PMID

100
Beale A M, Jacques S D M, Gibson E K, Di Michiel M. Progress towards five dimensional diffraction imaging of functional materials under process conditions. Coordination Chemistry Reviews, 2014, 277–278: 208–223

DOI

101
Vila F D, Rehr J J, Kelly S D, Bare S R. Operando effects on the structure and dynamics of PtnSnm/g-Al2O3 from ab initio molecular dynamics and X-ray absorption spectra. Journal of Physical Chemistry C, 2013, 117(24): 12446–12457

DOI

102
O’Brien M G, Jacques S D M, Di Michiel M, Barnes P, Weckhuysen B M, Beale A M. Active phase evolution in single Ni/Al2O3 methanation catalyst bodies studied in real time using combined μ-XRD-CT and μ-absorption-CT. Chemical Science, 2012, 3(2): 509–523

DOI

103
Senecal P, Jacques S D M, Di Michiel M, Kimber S A J, Vamvakeros A, Odarchenko Y, Lezcano-Gonzalez I, Paterson J, Ferguson E, Beale A M. Real-time scattering-contrast imaging of a supported cobalt-based catalyst body during activation and Fischer-Tropsch synthesis revealing spatial dependence of particle size and phase on catalytic properties. ACS Catalysis, 2017, 7(4): 2284–2293

DOI

104
Ngo C, Dzara M J, Shulda S, Pylypenko S.Spectroscopy and Microscopy for Characterization of Fuel Cell Catalysts. Electrocatalysts for Low Temperature Fuel Cells. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2017, 443–466

105
Zhang C, Gustafson J, Merte L R, Evertsson J, Norén K, Carlson S, Svensson H, Carlsson P A. An in situ sample environment reaction cell for spatially resolved X-ray absorption spectroscopy studies of powders and small structured reactors. Review of Scientific Instruments, 2015, 86(3): 033112

DOI PMID

106
Alrwashdeh S S, Manke I, Markötter H, Klages M, Göbel M, Haußmann J, Scholta J, Banhart J. In operando quantification of three-dimensional water distribution in nanoporous carbon-based layers in polymer electrolyte membrane fuel cells. ACS Nano, 2017, 11(6): 5944–5949

DOI PMID

107
Yang Y, Risse S, Mei S, Jafta C J, Lu Y, Stöcklein C, Kardjilov N, Manke I, Gong J, Kochovski Z, Ballauff M. Binder-free carbon monolith cathode material for operando investigation of high performance lithium-sulfur batteries with X-ray radiography. Energy Storage Materials, 2017, 9: 96–104

DOI

108
Sezen H, Rockett A A, Suzer S. XPS investigation of a CdS-based photoresistor under working conditions: Operando-XPS. Analytical Chemistry, 2012, 84(6): 2990–2994

DOI PMID

109
Polcari D, Dauphin-Ducharme P, Mauzeroll J. Scanning electrochemical microscopy: A comprehensive review of experimental parameters from 1989 to 2015. Chemical Reviews, 2016, 116(22): 13234–13278

DOI PMID

110
Li F, Ciani I, Bertoncello P, Unwin P R, Zhao J, Bradbury C R, Fermin D J. Scanning electrochemical microscopy of redox-mediated hydrogen evolution catalyzed by two-dimensional assemblies of palladium nanoparticles. Journal of Physical Chemistry C, 2008, 112(26): 9686–9694

DOI

111
Sá J, Fernandes D L A, Aiouache F, Goguet A, Hardacre C, Lundie D, Naeem W, Partridge W P, Stere C, Spaci M S. SpaciMS: Spatial and temporal operando resolution of reactions within catalytic monoliths. Analyst, 2010, 135(9): 2260–2272

DOI PMID

112
Bosco M, Vogel F. Optically accessible channel reactor for the kinetic investigation of hydrocarbon reforming reactions. Catalysis Today, 2006, 116(3): 348–353

DOI

113
Horn R, Williams K A, Degenstein N J, Bitsch-Larsen A, Dalle Nogare D, Tupy S A, Schmidt L D. Methane catalytic partial oxidation on autothermal Rh and Pt foam catalysts: Oxidation and reforming zones, transport effects, and approach to thermodynamic equilibrium. Journal of Catalysis, 2007, 249(2): 380–393

DOI

114
Luo J Y, Hou X, Wijayakoon P, Schmieg S J, Li W, Epling W S. Spatially resolving SCR reactions over a Fe/zeolite catalyst. Applied Catalysis B: Environmental, 2011, 102(1–2): 110–119

DOI

115
Kopyscinski J, Schildhauer T J, Vogel F, Biollaz S M A, Wokaun A. Applying spatially resolved concentration and temperature measurements in a catalytic plate reactor for the kinetic study of CO methanation. Journal of Catalysis, 2010, 271(2): 262–279

DOI

116
Geske M, Korup O, Horn R. Resolving kinetics and dynamics of a catalytic reaction inside a fixed bed reactor by combined kinetic and spectroscopic profiling. Catalysis Science & Technology, 2013, 3(1): 169–175

DOI

117
Korup O, Mavlyankariev S, Geske M, Goldsmith C F, Horn R. Measurement and analysis of spatial reactor profiles in high temperature catalysis research. Chemical Engineering and Processing: Process Intensification, 2011, 50(10): 998–1009

DOI

118
Gladden L F, Mantle M D, Sederman A J. Magnetic Resonance Imaging of Catalysts and Catalytic Processes. In: Gates B C, Knzinger H, eds. Advances in Catalysis. Massachusetts: Academic Press, 2006, 1–75

119
Lysova A A, Koptyug I V. Magnetic resonance imaging methods for in situ studies in heterogeneous catalysis. Chemical Society Reviews, 2010, 39(12): 4585–4601

DOI PMID

120
Barskiy D A, Coffey A M, Nikolaou P, Mikhaylov D M, Goodson B M, Branca R T, Lu G J, Shapiro M G, Telkki V V, Zhivonitko V V, Koptyug I V, Salnikov O G, Kovtunov K V, Bukhtiyarov V I, Rosen M S, Barlow M J, Safavi S, Hall I P, Schröder L, Chekmenev E Y. NMR hyperpolarization techniques of gases. Chemistry, 2017, 23(4): 725–751

DOI PMID

121
Kovtunov K V, Barskiy D A, Shchepin R V, Coffey A M, Waddell K W, Koptyug I V, Chekmenev E Y. Demonstration of heterogeneous parahydrogen induced polarization using hyperpolarized agent migration from dissolved Rh(I) complex to gas phase. Analytical Chemistry, 2014, 86(13): 6192–6196

DOI PMID

122
Telkki V V, Zhivonitko V V, Selent A, Scotti G, Leppäniemi J, Franssila S, Koptyug I V. Lab-on-a-chip reactor imaging with unprecedented chemical resolution by Hadamard-encoded remote detection NMR. Angewandte Chemie International Edition, 2014, 53(42): 11289–11293

DOI PMID

123
Gladden L F, Buckley C, Chow P S, Davidson J F, Mantle M D, Sederman A J. ‘Looking into’ chemical products and processes. Current Applied Physics, 2004, 4(2): 93–97

DOI

124
Gladden L F, Mantle M D, Sederman A J. Magnetic resonance imaging of catalysts and catalytic processes. Advances in Catalysis, 2006, 50: 1–75

DOI

125
Cattaneo A S, Villa D C, Angioni S, Ferrara C, Melzi R, Quartarone E, Mustarelli P. Operando electrochemical NMR microscopy of polymer fuel cells. Energy & Environmental Science, 2015, 8(8): 2383–2388

DOI

126
Britton M M, Sederman A J, Taylor A F, Scott S K, Gladden L F. Magnetic resonance imaging of flow-distributed oscillations. Journal of Physical Chemistry A, 2005, 109(37): 8306–8313

DOI PMID

127
Ulpts J, Dreher W, Kiewidt L, Schubert M, Thöming J. In situ analysis of gas phase reaction processes within monolithic catalyst supports by applying NMR imaging methods. Catalysis Today, 2016, 273: 91–98

DOI

128
Ulpts J, Kiewidt L, Dreher W, Thöming J. 3D characterization of gas phase reactors with regularly and irregularly structured monolithic catalysts by NMR imaging and modeling. Catalysis Today, 2018, 310: 176–186

DOI

129
Zheng Q, Russo-Abegao F J, Sederman A J, Gladden L F. Operando determination of the liquid-solid mass transfer coefficient during 1-octene hydrogenation. Chemical Engineering Science, 2017, 171: 614–624

DOI

130
Li H, Rivallan M, Thibault-Starzyk F, Travert A, Meunier F C. Effective bulk and surface temperatures of the catalyst bed of FT-IR cells used for in situ and operando studies. Physical Chemistry Chemical Physics, 2013, 15(19): 7321–7327

DOI PMID

131
Kellow J C, Wolf E E. Infrared thermography and FTIR studies of catalyst preparation effects on surface reaction dynamics during CO and ethylene oxidation on Rh/SiO2 catalysts. Chemical Engineering Science, 1990, 45(8): 2597–2602

DOI

132
Kellow J, Wolf E E. In-situ IR thermography studies of reaction dynamics during CO oxidation on Rh-SiO2 catalysts. Catalysis Today, 1991, 9(1): 47–51

DOI

133
Kellow J C, Wolf E E. Propagation of oscillations during ethylene oxidation on a Rh/SiO2 catalyst. AIChE Journal. American Institute of Chemical Engineers, 1991, 37(12): 1844–1848

DOI

134
Koptyug I V, Khomichev A V, Lysova A A, Sagdeev R Z. Spatially resolved NMR thermometry of an operating fixed-bed catalytic reactor. Journal of the American Chemical Society, 2008, 130(32): 10452–10453

DOI PMID

135
Lysova A A, Kulikov A V, Parmon V N, Sagdeev R Z, Koptyug I V. Quantitative temperature mapping within an operating catalyst by spatially resolved 27Al NMR. Chemical Communications, 2012, 48(46): 5763–5765

DOI PMID

136
Kimmerle B, Grunwaldt J D, Baiker A, Glatzel P, Boye P, Stephan S, Schroer C G. Visualizing a catalyst at work during the ignition of the catalytic partial oxidation of methane. Journal of Physical Chemistry C, 2009, 113(8): 3037–3040

DOI

137
Cao E, Firth S, McMillan P F, Gavriilidis A. Application of microfabricated reactors for operando Raman studies of catalytic oxidation of methanol to formaldehyde on silver. Catalysis Today, 2007, 126(1–2): 119–126

DOI

138
Gänzler A M, Casapu M, Boubnov A, Müller O, Conrad S, Lichtenberg H, Frahm R, Grunwaldt J D. Operando spatially and time-resolved X-ray absorption spectroscopy and infrared thermography during oscillatory CO oxidation. Journal of Catalysis, 2015, 328: 216–224

DOI

139
Hannemann S, Grunwaldt J D, van Vegten N, Baiker A, Boye P, Schroer C G. Distinct spatial changes of the catalyst structure inside a fixed-bed microreactor during the partial oxidation of methane over Rh/Al2O3. Catalysis Today, 2007, 126(1–2): 54–63

DOI

140
Grunwaldt J D, Baiker A. Axial variation of the oxidation state of Pt-Rh/Al2O3 during partial methane oxidation in a fixed-bed reactor: An in situ X-ray absorption spectroscopy study. Catalysis Letters, 2005, 99(1): 5–12

DOI

141
Fletcher P D I, Haswell S J, Zhang X. Monitoring of chemical reactions within microreactors using an inverted Raman microscopic spectrometer. Electrophoresis, 2003, 24(18): 3239–3245

DOI PMID

Outlines

/