REVIEW ARTICLE

Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes

  • Yan Zhang 1 ,
  • Jian Xiao 1 ,
  • Qiying Lv 1 ,
  • Shuai Wang , 1,2
Expand
  • 1. State Key Laboratory of Digital Manufacturing Equipment and Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2. Flexible Electronics Research Center (FERC), School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 01 Feb 2018

Accepted date: 08 Apr 2018

Published date: 18 Sep 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Electrolytic water splitting has been considered as a promising technology to produce highly pure H2 by using electrical power produced from wind, solar energy or other fitful renewable energy resources. Combining novel self-supporting structure and high-performance transition metal phosphides (TMP) shows substantial promise for practical application in water splitting. In this review, we try to provide a comprehensive analysis of the design and fabrication of various self-supported TMP electrodes for hydrogen evolution reaction, which are divided into three categories: catalysts growing on carbon-based substrates, catalysts growing on metal-based substrates and freestanding catalyst films. The material structures together with catalytic performances of self-supported electrodes are presented and discussed. We also show the specific strategies to further improve the catalytic performance by elemental doping or incorporation of nanocarbons. The simple and one-step methods to fabricate self-supported TMP electrodes are also highlighted. Finally, the challenges and perspectives for self-supported TMP electrodes in water splitting application are briefly discussed.

Cite this article

Yan Zhang , Jian Xiao , Qiying Lv , Shuai Wang . Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes[J]. Frontiers of Chemical Science and Engineering, 2018 , 12(3) : 494 -508 . DOI: 10.1007/s11705-018-1732-9

Acknowledgements

This work is supported by the China Postdoctoral Science Foundation project (Grant Nos. 2015M572135 and 2017T100547) and the National Natural Science Foundation of China (Grant Nos. 51173055, 51572094 and 21401060).
1
Turner J A. Sustainable hydrogen production. Science, 2004, 305(5686): 972–974

DOI

2
Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q X, Santori E A, Lewis N S. Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473

DOI

3
McCrory C C L, Jung S, Ferrer I M, Chatman S M, Peters J C, Jaramillo T F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. Journal of the American Chemical Society, 2015, 137(13): 4347–4357

DOI

4
Zeng M, Li Y. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(29): 14942–14962

DOI

5
Fang M, Dong G, Wei R, Ho J C. Hierarchical nanostructures: Design for sustainable water splitting. Advanced Energy Materials, 2017, 7(23): 1700559

DOI

6
Cheng N, Stambula S, Wang D, Banis M N, Liu J, Riese A, Xiao B, Li R, Sham T K, Liu L, Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nature Communications, 2016, 7: 13638

DOI

7
Chen Z, Ye S, Wilson A R, Ha Y, Wiley B J. Optically transparent hydrogen evolution catalysts made from networks of copper-platinum core-shell nanowires. Energy & Environmental Science, 2014, 7(4): 1461–1467

DOI

8
Wang J H, Cui W, Liu Q, Xing Z C, Asiri A M, Sun X P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Advanced Materials, 2016, 28(2): 215–230

DOI

9
Zhang J, Wang T, Liu P, Liao Z Q, Liu S H, Zhuang X D, Chen M W, Zschech E, Feng X L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nature Communications, 2017, 8: 15437

DOI

10
Wang T, Guo Y, Zhou Z, Chang X, Zheng J, Li X. Ni-Mo nanocatalysts on Ndoped graphite nanotubes for highly efficient electrochemical hydrogen evolution in acid. ACS Nano, 2016, 10(11): 10397–10403

DOI

11
Gong M, Zhou W, Tsai M C, Zhou J G, Guan M Y, Lin M C, Zhang B, Hu Y F, Wang D Y, Yang J, Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nature Communications, 2014, 5: 4695

DOI

12
Jin Y S, Wang H T, Li J J, Yue X, Han Y J, Shen P K, Cui Y. Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Advanced Materials, 2016, 28(19): 3785–3790

DOI

13
Tang Y J, Wang Y, Wang X L, Li S L, Huang W, Dong L Z, Liu C H, Li Y F, Lan Y Q. Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Advanced Energy Materials, 2016, 6(12): 1600116

DOI

14
Wang J, Zhong H X, Wang Z L, Meng F L, Zhang X B. Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano, 2016, 10(2): 2342–2348

DOI

15
Tang C, Cheng N Y, Pu Z H, Xing W, Sun X P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angewandte Chemie International Edition, 2015, 54(32): 9351–9355

DOI

16
Chen X S, Liu G B, Zheng W, Feng W, Cao W W, Hu W P, Hu P A. Vertical 2D MoO2/MoSe2 core-shell nanosheet arrays as high-performance electrocatalysts for hydrogen evolution reaction. Advanced Functional Materials, 2016, 26(46): 8537–8544

DOI

17
Yan H J, Tian C G, Wang L, Wu A P, Meng M C, Zhao L, Fu H G. Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angewandte Chemie International Edition, 2015, 127(21): 6423–6427

DOI

18
Shi J L, Pu Z H, Liu Q, Asiri A M, Hu J M, Sun X P. Tungsten nitride nanorods array grown on carbon cloth as an efficient hydrogen evolution cathode at all pH values. Electrochimica Acta, 2015, 154: 345–351

DOI

19
Callejas J F, Read C G, Roske C W, Lewis N S, Schaak R E. Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction. Chemistry of Materials, 2016, 28(17): 6017–6044

DOI

20
Yang Y, Fei H L, Ruan G D, Tour J M. Porous cobalt-based thin film as a bifunctional catalyst for hydrogen generation and oxygen generation. Advanced Materials, 2015, 27(20): 3175–3180

DOI

21
Tang C, Xie L S, Wang K Y, Du G, Asiri A M, Luo Y L, Sun X P A. Ni2P nanosheet array integrated on 3D Ni foam: An efficient, robust and reusable monolithic catalyst for the hydrolytic dehydrogenation of ammonia borane toward on-demand hydrogen generation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(32): 12407–12410

DOI

22
Tang C, Zhang R, Lu W B, Wang Z, Liu D N, Hao S, Du G, Asiri A M, Sun X P. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angewandte Chemie International Edition, 2017, 56(3): 842–846

DOI

23
Wu H B, Xia B Y, Yu L, Yu X Y, Lou X W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nature Communications, 2015, 6(1): 6512

DOI

24
Ma F X, Wu H B, Xia B Y, Xu C Y, Lou X W. Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production. Angewandte Chemie International Edition, 2015, 54(51): 15395–15399

DOI

25
Vrubel H, Hu X L. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angewandte Chemie International Edition, 2012, 51(51): 12703–12706

DOI

26
Li H, Wen P, Li Q, Dun Q C, Xing J H, Lu C, Adhikari S, Jiang L, Carroll D L, Geyer S M. Earth-abundant iron diboride (FeB2) nanoparticles as highly active bifunctional electrocatalysts for overall water splitting. Advanced Energy Materials, 2017, 7(17): 1700513

DOI

27
Zhang J T, Qu L T, Shi G Q, Liu J Y, Chen J F, Dai L M N. P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angewandte Chemie International Edition, 2016, 55(6): 2230–2234

DOI

28
Das R K, Wang Y, Vasilyeva S V, Donoghue E, Pucher I, Kamenov G, Cheng H P, Rinzler A G. Extraordinary hydrogen evolution and oxidation reaction activity from carbon nanotubes and graphitic carbons. ACS Nano, 2014, 8(8): 8447–8456

DOI

29
Carenco S, Portehault D, Boissière C, Mézailles N, Sanchez C. Nanoscaled metal borides and phosphides: Recent developments and perspectives. Chemical Reviews, 2013, 113(10): 7981–8065

DOI

30
Xiao P, Chen W, Wang X. A review of phosphide-based materials for electrocatalytic hydrogen evolution. Advanced Energy Materials, 2015, 5(24): 1500985

DOI

31
Tang C, Qu F L, Asiri A M, Luo Y L, Sun X P. CoP nanoarray: A robust non-noble-metal hydrogen-generating catalyst toward effective hydrolysis of ammonia borane. Inorganic Chemistry Frontiers, 2017, 4(4): 659–662

DOI

32
Popczun E J, McKone J R, Read C G, Biacchi A J, Wiltrout A M, Lewis N S, Schaak R E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 2013, 135(25): 9267–9270

DOI

33
McEnaney J M, Crompton J C, Callejas J F, Popczun E J, Biacchi A J, Lewis N S, Schaak R E. Amorphous molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution. Chemistry of Materials, 2014, 26(16): 4826–4831

DOI

34
Xing Z C, Liu Q, Asiri A M, Sun X P. Closely Interconnected network of molybdenum phosphide nanoparticles: A highly efficient electrocatalyst for generating hydrogen from water. Advanced Materials, 2014, 26(32): 5702–5707

DOI

35
Feng Y, Yu X Y, Paik U Y. Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution. Chemical Communications, 2016, 52(8): 1633–1636

DOI

36
Liu Q, Tian J Q, Cui W, Jiang P, Cheng N Y, Asiri A M, Sun X P. Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angewandte Chemie International Edition, 2014, 53(26): 6710–6714

DOI

37
Li X L, Liu W, Zhang M Y, Zhong Y R, Weng Z, Mi Y Y, Zhou Y, Li M, Cha J J, Tang Z Y, Strong metal-phosphide interactions in core-shell geometry for enhanced electrocatalysis. Nano Letters, 2017, 17(3): 2057–2063

DOI

38
Wang X D, Cao Y, Teng Y, Chen H Y, Xu Y F, Kuang D B. Large-area synthesis of Ni2P honeycomb electrode for highly efficient water splitting. ACS Applied Materials & Interfaces, 2017, 9(38): 32812–32819

DOI

39
Ledendecker M, Calderon S K, Papp C, Steinruck H P, Antonietti M, Shalom M. The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angewandte Chemie International Edition, 2015, 54(42): 12361–12365

DOI

40
Liu T T, Wang K Y, Du G, Asiri A M, Sun X P. Self-supported CoP nanosheet arrays: A nonprecious metal catalyst for efficient hydrogen generation from alkaline NaBH4 solution. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(34): 13053–13057

DOI

41
Liu T T, Xie L S, Yang J H, Kong R M, Du G, Asiri A M, Sun X P, Chen L. Self-standing CoP nanosheets array: A three-dimensional bifunctional catalyst electrode for overall water splitting in both neutral and alkaline media. ChemElectroChem, 2017, 4(8): 1840–1845

DOI

42
Jiang N, You B, Sheng M L, Sun Y J. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angewandte Chemie International Edition, 2015, 54(21): 6251–6254

DOI

43
Liu Q, Gu S, Li C M. Electrodeposition of nickel-phosphorus nanoparticles film as a Janus electrocatalyst for electro-splitting of water. Journal of Power Sources, 2015, 299: 342–346

DOI

44
Han S, Feng Y L, Zhang F, Yang C Q, Yao Z Q, Zhao W X, Qiu F, Yang L Y, Yao Y F, Zhuang X D, et al. Metal-phosphide-containing porous carbons derived from an ionic-polymer framework and applied as highly efficient electrochemical catalysts for water splitting. Advanced Functional Materials, 2015, 25(25): 3899–3906

DOI

45
Zhang G, Wang G H, Liu Y, Liu H J, Qu J H, Li J H. Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. Journal of the American Chemical Society, 2016, 138(44): 14686–14693

DOI

46
Zhang T Q, Liu J, Huang L B, Zhang X D, Sun Y G, Liu X C, Bin D S, Chen X, Cao A M, Hu J S, Microbial phosphorous enabled synthesis of phosphides nanocomposites for efficient electrocatalysts. Journal of the American Chemical Society, 2017, 139(32): 11248–11253

DOI

47
Ma T Y, Dai S, Qiao S Z. Self-supported electrocatalysts for advanced energy conversion processes. Materials Today, 2015, 19(5): 265–273

DOI

48
Pi M Y, Wu T L, Zhang D K, Chen S J, Wang S X. Self-supported three-dimensional mesoporous semimetallic WP2 nanowire arrays on carbon cloth as a flexible cathode for efficient hydrogen evolution. Nanoscale, 2016, 8(47): 19779–19786

DOI

49
Li Y J, Zhang H C, Jiang M, Zhang Q, He P L, Sun X M. 3D self-supported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting. Advanced Functional Materials, 2017, 27(37): 1702513

DOI

50
Yu J, Li Q Q, Li Y, Xu C Y, Zhen L, Dravid V P, Wu J S. Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Advanced Functional Materials, 2016, 26(42): 7644–7651

DOI

51
Zhang Z Y, Liu S S, Xiao J, Wang S. Fiber-based multifunctional nickel phosphide electrodes for flexible energy conversion and storage. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(24): 9691–9699

DOI

52
Shi Y M, Zhang B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 2016, 45(6): 1529–1541

DOI

53
Prins R, Bussell M E. Metal phosphides: Preparation, characterization and catalytic reactivity. Catalysis Letters, 2012, 142(12): 1413–1436

DOI

54
Strmcnik D, Lopes P P, Genorio B, Stamenkovic V R, Markovic N M. Design principles for hydrogen evolution reaction catalyst materials. Nano Energy, 2016, 29: 29–36

DOI

55
Wang Y, Kong B, Zhao D Y, Wang H T, Selomulya C. Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today, 2017, 15: 26–55

DOI

56
Morales-Guio C G, Stern L A, Hu X L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 2014, 43(18): 6555–6569

DOI

57
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355: eaad4998

58
Vrubel H, Moehl T, Gratzel M, Hu X L. Revealing and accelerating slow electron transport in amorphous molybdenum sulphide particles for hydrogen evolution reaction. Chemical Communications, 2013, 49(79): 8985–8987

DOI

59
Wu T L, Pi M Y, Zhang D K, Chen S J. 3D structured porous CoP3 nanoneedle arrays as an efficient bifunctional electrocatalyst for the evolution reaction of hydrogen and oxygen. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(38): 14539–14544

DOI

60
Wang X D, Chen H Y, Xu Y F, Liao J F, Chen B X, Rao H S, Kuang D B, Su C Y. Self-supported NiMoP2 nanowires on carbon cloth as an efficient and durable electrocatalyst for overall water splitting. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(15): 7191–7199

DOI

61
Xiao W, Liu P T, Zhang J Y, Song W D, Feng Y P, Gao D Q, Ding J. Dual-functional N dopants in edges and basal plane of MoS2 nanosheets toward efficient and durable hydrogen evolution. Advanced Energy Materials, 2017, 7(7): 1602086

DOI

62
Li Q, Xing Z C, Asiri A M, Jiang P, Sun X P. Cobalt phosphide nanoparticles film growth on carbon cloth: A high-performance cathode for electrochemical hydrogen evolution. International Journal of Hydrogen Energy, 2014, 39(30): 16806–16811

DOI

63
Wang X G, Li W, Xiong D H, Petrovykh D Y, Liu L F. Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Advanced Functional Materials, 2016, 26(23): 4067–4077

DOI

64
Zhang G, Song Y, Zhang H, Xu J, Duan H, Liu J. Radially aligned porous carbon nanotube arrays on carbon fibers: A hierarchical 3D carbon nanostructure for high-performance capacitive energy storage. Advanced Functional Materials, 2016, 26(18): 3012–3020

DOI

65
Xu K, Cheng H, Lv H, Wang J, Liu L, Liu S, Wu X, Chu W, Wu C, Xie Y. Controllable surface reorganization engineering on cobalt phosphide nanowire arrays for efficient alkaline hydrogen evolution reaction. Advanced Materials, 2018, 30(1): 1703322

DOI

66
Yan Y, Xia B Y, Ge X, Liu Z, Fisher A, Wang X. A flexible electrode based on iron phosphide nanotubes for overall water splitting. Chemistry, 2015, 21(50): 18062–18067

DOI

67
Wang A L, He X J, Lu X F, Xu H, Tong Y X, Li G R. Palladium-cobalt nanotube arrays supported on carbon fiber cloth as high-performance flexible electrocatalysts for ethanol oxidation. Angewandte Chemie International Edition, 2015, 54(12): 3669–3673

DOI

68
Tong S S, Wang X J, Li Q C, Han X J. Progress on electrocatalysts of hydrogen evolution reaction based on carbon fiber materials. Chinese Journal of Analytical Chemistry, 2016, 44(9): 1447–1457

DOI

69
Liang Y, Liu Q, Asiri A M, Sun X, Luo Y. Self-supported FeP nanorod arrays: A cost-effective 3D hydrogen evolution cathode with high catalytic activity. ACS Catalysis, 2014, 4(11): 4065–4069

DOI

70
Jiang P, Liu Q, Sun X. NiP2 nanosheet arrays supported on carbon cloth: An efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale, 2014, 6(22): 13440–13445

DOI

71
Pu Z, Liu Q, Asiri A M, Sun X. Tungsten phosphide nanorod arrays directly grown on carbon cloth: A highly efficient and stable hydrogen evolution cathode at all pH values. ACS Applied Materials & Interfaces, 2014, 6(24): 21874–21879

DOI

72
Zhu W X, Tang C, Liu D N, Wang J L, Asiric A M, Sun X P. A self-standing nanoporous MoP2 nanosheet array: An advanced pH-universal catalytic electrode for the hydrogen evolution reaction. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(19): 7169–7173

DOI

73
Tian J, Liu Q, Asiri A M, Sun X. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. Journal of the American Chemical Society, 2014, 136(21): 7587–7590

DOI

74
Yang X, Lu A Y, Zhu Y, Hedhili M N, Min S X, Huang K W, Han Y, Lin L J. CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation. Nano Energy, 2015, 15: 634–641

DOI

75
Tian J, Liu Q, Liang Y, Xing Z, Asiri A M, Sun X. FeP nanoparticles film grown on carbon cloth: An ultrahighly active 3D hydrogen evolution cathode in both acidic and neutral solutions. ACS Applied Materials & Interfaces, 2014, 6(23): 20579–20584

DOI

76
Streckova M, Mudra E, Orinakova R, Markusova-Buckova L, Sebek M, Kovalcikova A, Sopcak T, Girman V, Dankova Z, Micusik M, Nickel and nickel phosphide nanoparticles embedded in electrospun carbon fibers as favourable electrocatalysts for hydrogen evolution. Chemical Engineering Journal, 2016, 303: 167–181

DOI

77
Ma Y Y, Wu C X, Feng X J, Tan H Q, Yan L K, Liu Y, Kang Z H, Wang E B, Li Y G. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy & Environmental Science, 2017, 10(3): 788–798

DOI

78
Ye C, Wang M Q, Chen G, Deng Y H, Li L J, Luo H Q, Li N B. One-step CVD synthesis of carbon framework wrapped Co2P as a flexible electrocatalyst for efficient hydrogen evolution. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(17): 7791–7795

DOI

79
Li D Q, Liao Q Y, Ren B W, Jin Q Y, Cui H, Wang X C. A 3D-composite structure of FeP nanorods supported by vertically aligned graphene for the high-performance hydrogen evolution reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(22): 11301–11308

DOI

80
Du C, Yang L, Yang F L, Cheng G Z, Luo W. Nest-like NiCoP for highly efficient overall water splitting. ACS Catalysis, 2017, 7(6): 4131–4137

DOI

81
Xiao X, Tao L, Li M, Lv X, Huang D, Jiang X, Pan H, Wang M, Shen Y. Electronic modulation of transition metal phosphide via doping as efficient and pH-universal electrocatalysts for hydrogen evolution reaction. Chemical Science, 2018, 9(7): 1970–1975

DOI

82
Ma M, Zhu G, Xie F, Qu F L, Liu Z, Du G, Asiri A M, Yao Y D, Sun X P. Homologous catalysts based on Fe-doped CoP nanoarrays for high-performance full water splitting under benign conditions. ChemSusChem, 2017, 10(16): 3188–3192

DOI

83
Wang A L, Lin J, Xu H, Tong Y X, Li G R. Ni2P-CoP hybrid nanosheet arrays supported on carbon cloth as an efficient flexible cathode for hydrogen evolution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(43): 16992–16999

DOI

84
Zhang R, Tang C, Kong R M, Du G, Asiri A M, Chen L, Sun X P. Al-doped CoP nanoarray: A durable water-splitting electrocatalyst with superhigh activity. Nanoscale, 2017, 9(14): 4793–4800

DOI

85
Wang X D, Xu Y F, Rao H S, Xu W J, Chen H Y, Zhang W X, Kuang D B, Su C Y. Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energy & Environmental Science, 2016, 9(4): 1468–1475

DOI

86
Zhang R, Wang X, Yu S, Wen T, Zhu X W, Yang F X, Sun X N, Wang X K, Hu W P. Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Advanced Materials, 2017, 29(9): 1605502

DOI

87
Zhuo J, Cabán-Acevedo M, Liang H, Samad L, Ding Q, Fu Y P, Li M X, Jin S. High-performance electrocatalysis for hydrogen evolution reaction using Se-doped pyrite-phase nickel diphosphide nanostructures. ACS Catalysis, 2015, 5(11): 6355–6361

DOI

88
Han A L, Jin S, Chen H L, Ji H X, Sun Z J, Du P W. A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: high performance for electrocatalytic hydrogen production from pH 0-14. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(5): 1941–1946

DOI

89
Read C G, Callejas J F, Holder C F, Schaak R E. General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution. ACS Applied Materials & Interfaces, 2016, 8(20): 12798–12803

DOI

90
Pu Z, Amiinu I S, Mu S. In situ fabrication of tungsten diphosphide nanoparticles on tungsten foil: A hydrogen-evolution cathode for a wide pH range. Energy Technology, 2016, 4(9): 1030–1034

DOI

91
Bai Y J, Zhang H J, Fang L, Liu L, Qiu H J, Wang Y. Novel peapod array of Ni2P@graphitized carbon fiber composites growing on Ti substrate: A superior material for Li-ion batteries and the hydrogen evolution reaction. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(10): 5434–5441

DOI

92
Liu R W, Gu S, Du H F, Li C M. Controlled synthesis of FeP nanorod arrays as highly efficient hydrogen evolution cathode. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(41): 17263–17267

DOI

93
Pu Z, Liu Q, Jiang P, Asiri A M, Obaid A Y, Sun X. CoP nanosheet arrays supported on a Ti plate: An efficient cathode for electrochemical hydrogen evolution. Chemistry of Materials, 2014, 26(15): 4326–4329

DOI

94
Liu T T, Ma X, Liu D N, Hao S, Du G, Ma Y J, Asiri A M, Sun X P, Chen L. Mn doping of CoP nanosheets array: An efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values. ACS Catalysis, 2017, 7(1): 98–102

DOI

95
Zhang L, Ren X, Guo X, Liu Z, Asiri A M, Li B H, Chen L, Sun X P. Efficient hydrogen evolution electrocatalysis at alkaline pH by interface engineering of Ni2P-CeO2. Inorganic Chemistry, 2018, 57(2): 548–552

DOI

96
Pu Z H, Liu Q, Tang C, Asiri A M, Sun X P. Ni2P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode. Nanoscale, 2014, 6(19): 11031–11034

DOI

97
Pu Z, Amiinu I S, Wang M, Yang Y, Mu S. Semimetallic MoP2: An active and stable hydrogen evolution electrocatalyst over the whole pH range. Nanoscale, 2016, 8(16): 8500–8504

DOI

98
Pu Z, Tang C, Luo Y. Ferric phosphide nanoparticles film supported on titanium plate: A high-performance hydrogen evolution cathode in both acidic and neutral solutions. International Journal of Hydrogen Energy, 2015, 40(15): 5092–5098

DOI

99
Jiang P, Liu Q, Liang Y, Tian J, Asiri A, Sun X. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angewandte Chemie, 2014, 53(47): 12855–12859

DOI

100
Zhou D, He L, Zhu W, Hou X, Wang K, Du G, Zheng C, Sun X, Asiri A M. Interconnected urchin-like cobalt phosphide microspheres film for highly efficient electrochemical hydrogen evolution in both acidic and basic media. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(26): 10114–10117

DOI

101
Niu Z, Jiang J, Ai L. Porous cobalt phosphide nanorod bundle arrays as hydrogen-evolving cathodes for electrochemical water splitting. Electrochemistry Communications, 2015, 56: 56–60

DOI

102
Wu L, Pu Z, Tu Z, Amiinu I S, Liu S, Wang P, Mu S. Integrated design and construction of WP/W nanorod array electrodes toward efficient hydrogen evolution reaction. Chemical Engineering Journal, 2017, 327: 705–712

DOI

103
Son C Y, Kwak I H, Lim Y R, Park J. FeP and FeP2 nanowires for efficient electrocatalytic hydrogen evolution reaction. Chemical Communications, 2016, 52(13): 2819–2822

DOI

104
Wei L, Goh K, Birer O, Karahan H, Chang J, Zhai S, Chen X, Chen Y. A hierarchically porous nickel-copper phosphide nano-foam for efficient electrochemical splitting of water. Nanoscale, 2017, 9(13): 4401–4408

DOI

105
Zhang Y, Liu Y W, Ma M, Ren X, Liu Z A, Du G, Asiri A M, Sun X P. A Mn-doped Ni2P nanosheet array: An efficient and durable hydrogen evolution reaction electrocatalyst in alkaline media. Chemical Communications, 2017, 53(80): 11048–11051

DOI

106
Liang H, Gandi A N, Anjum D H, Wang X, Schwingenschlogl U, Alshareef H N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Letters, 2016, 16(12): 7718–7725

DOI

107
Tian J, Liu Q, Cheng N, Asiri A M, Sun X. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angewandte Chemie, 2014, 53(36): 9577–9581

DOI

108
Li W, Gao X, Xiong D, Xia F, Liu J, Song W, Xu J, Thalluri S M, Cerqueira M F, Fu X, Vapor-solid synthesis of monolithic singlecrystalline CoP nanowire electrodes for efficient and robust water electrolysis. Chemical Science, 2017, 8(4): 2952–2958

DOI

109
Ma Z, Li R, Wang M, Meng H, Zhang F, Bao X, Tang B, Wang X. Self-supported porous Ni-Fe-P composite as an efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline medium. Electrochimica Acta, 2016, 219: 194–203

DOI

110
Liu T T, Liu D N, Qu F L, Wang D X, Zhang L, Ge R X, Hao S, Ma Y J, Du G, Asiri A M, et al. Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Advanced Energy Materials, 2017, 7(15): 1700020

DOI

111
Zhu Y P, Liu Y P, Ren T Z, Yuan Z Y. Self-supported cobalt phosphide mesoporous nanorod arrays: A flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Advanced Functional Materials, 2015, 25(47): 7337–7347

DOI

112
Wang X, Kolen’ko Y V, Bao X Q, Kovnir K, Liu L. One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation. Angewandte Chemie, 2015, 54(28): 8188–8192

DOI

113
Xiao J, Lv Q Y, Zhang Y, Zhang Z Y, Wang S. One-step synthesis of nickel phosphide nanowire array supported on nickel foam with enhanced electrocatalytic water splitting performance. RSC Advances, 2016, 6(109): 107859–107864

DOI

114
Wang X, Kolen’ko Y V, Liu L. Direct solvothermal phosphorization of nickel foam to fabricate integrated Ni2P-nanorods/Ni electrodes for efficient electrocatalytic hydrogen evolution. Chemical Communications, 2015, 51(31): 6738–6741

DOI

115
You B, Jiang N, Sheng M, Bhushan M W, Sun Y. Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. ACS Catalysis, 2015, 6(2): 714–721

DOI

116
Tan Y, Wang H, Liu P, Cheng C, Zhu F, Hirata A, Chen M. 3D nanoporous metal phosphides toward high-efficiency electrochemical hydrogen production. Advanced Materials, 2016, 28(15): 2951–2955

DOI

117
Tan Y, Wang H, Liu P, Shen Y, Cheng C, Hirata A, Fujita T, Tang Z, Chen M. Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy & Environmental Science, 2016, 9(7): 2257–2261

DOI

118
Deng C, Ding F, Li X, Guo Y, Ni W, Yan H, Sun K, Yan Y. Template-preparation of three-dimensional molybdenum phosphide sponge as high performance electrode for hydrogen evolution. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 4(1): 59–66

DOI

119
Kibsgaard J, Tsai C, Chan K, Benck J D, Nørskov J K, Abild-Pedersen F, Jaramillo T F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy & Environmental Science, 2015, 8(10): 3022–3029

DOI

120
Cheng Y, Guo J, Huang Y, Liao Z, Xiang Z. Ultrastable hydrogen evolution electrocatalyst derived from phosphide postmodified metal-organic frameworks. Nano Energy, 2017, 35: 115–120

DOI

121
Minemawari H, Yamada T, Matsui H, Tsutsumi J Y, Haas S, Chiba R, Kumai R, Hasegawa T. Inkjet printing of single-crystal films. Nature, 2011, 475(7356): 364–367

DOI

122
Chi K, Zhang Z, Xi J, Huang Y, Xiao F, Wang S, Liu Y Q. Freestanding graphene paper supported three-dimensional porous graphene-polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Applied Materials & Interfaces, 2014, 6(18): 16312–16319

DOI

123
Pu Z, Amiinu I S, Zhang C, Wang M, Kou Z, Mu S. Phytic acid-derivative transition metal phosphides encapsulated in N,P-codoped carbon: An efficicent and durabale hydrogen evolution electrocatalyst in a wide pH range. Nanoscale, 2017, 9(10): 3555–3560

DOI

Outlines

/