RESEARCH ARTICLE

Efficient production of D-1,2,4-butanetriol from D-xylose by engineered Escherichia coli whole-cell biocatalysts

  • Shewei Hu 1 ,
  • Qian Gao 1 ,
  • Xin Wang 1 ,
  • Jianming Yang 2 ,
  • Nana Xu 1 ,
  • Kequan Chen , 1 ,
  • Sheng Xu 1 ,
  • Pingkai Ouyang 1
Expand
  • 1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
  • 2. Xi’an Modern Chemistry Research Institute, Xi’an 710065, China

Received date: 03 Feb 2018

Accepted date: 06 Apr 2018

Published date: 03 Jan 2019

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

We have developed a whole-cell bioconversion system for the production of D-1,2,4-butanetriol (BT) from renewable biomass. A plasmid pETduet-xylB-yjhG-T7-adhP-T7-mdlC was constructed and transformed to Escherichia coli BL21(DE3) to obtain the whole cells of E. coli BL21-XYMA capable of bioconversion D-xylose to BT. Then, the factors including carbon sources, nitrogen sources, metal ions, and culture conditions (pH, temperature, IPTG) were identified, and their effects on the whole-cell activity for BT production were investigated. To obtain the highest whole-cell activity, the optimal cultivation parameters are: 15 g·L1 yeast extract, 5 g·L1 sucrose, 3 g·L1 KH2PO4, 5 g·L1 NaCl, 3 g·L1 NH4Cl, 0.25 g·L1 MgSO4∙7H2O and 1 mL·L1 the mixture of trace elements. With the optimized whole cells of E. coli BL21-XYMA, 60 g·L1 of xylose was converted to 28 g·L1 BT with a molar yield of 66.0%, which is higher than those reported in the biotechnological system.

Cite this article

Shewei Hu , Qian Gao , Xin Wang , Jianming Yang , Nana Xu , Kequan Chen , Sheng Xu , Pingkai Ouyang . Efficient production of D-1,2,4-butanetriol from D-xylose by engineered Escherichia coli whole-cell biocatalysts[J]. Frontiers of Chemical Science and Engineering, 2018 , 12(4) : 772 -779 . DOI: 10.1007/s11705-018-1731-x

Acknowledgements

This research was financially supported by the Open Funding Project of the State Key Laboratory of Bioreactor Engineering, the National Natural Science Foundation of China (Grant Nos. 21576134, 21606127, 21390200) and the National Key Research and Development Program of China (Grant No. 2016YFA0204300).
1
Sànchez Nogué V, Karhumaa K. Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Biotechnology Letters, 2015, 37(4): 761–772

DOI PMID

2
Yamada-Onodera K, Norimoto A, Kawada N, Furuya R, Yamamoto H, Tani Y. Production of optically active 1,2,4-butanetriol from corresponding racemate by Microbial stereoinversion. Journal of Bioscience and Bioengineering, 2007, 103(5): 494–496

DOI PMID

3
Niu W, Molefe M N, Frost J W. Microbial synthesis of the energetic material 1,2,4-butanetriol. Abstracts of Papers of the American Chemical Society, 2004, 227: U298–U298

4
Xu Y, Qian L, Pontsler A V, McIntyre T M, Prestwich G D. Synthesis of difluoromethyl substituted lysophosphatidic acid analogues. Tetrahedron, 2004, 60(1): 43–49

DOI

5
Valdehuesa K N G, Liu H, Ramos K R M, Park S J, Nisola G M, Lee W K, Chung W J. Direct bioconversion of D-xylose to 1,2,4-butanetriol in an engineered Escherichia coli. Process Biochemistry, 2014, 49(1): 25–32

DOI

6
Zhang N, Wang J, Zhang Y, Gao H. Metabolic pathway optimization for biosynthesis of 1,2,4-butanetriol from xylose by engineered Escherichia coli. Enzyme and Microbial Technology, 2016, 93-94: 51–58

DOI PMID

7
Cao Y, Niu W, Guo J, Xian M, Liu H. Biotechnological production of 1,2,4-butanetriol: An efficient process to synthesize energetic material precursor from renewable biomass. Scientific Reports, 2015, 5(1): 18149

DOI PMID

8
Ishige T, Honda K, Shimizu S. Whole organism biocatalysis. Current Opinion in Chemical Biology, 2005, 9(2): 174–180

DOI PMID

9
Bornscheuer U T, Huisman G W, Kazlauskas R J, Lutz S, Moore J C, Robins K. Engineering the third wave of biocatalysis. Nature, 2012, 485(7397): 185–194

DOI PMID

10
Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Stürmer R, Zelinski T. Industrial methods for the production of optically active intermediates. Angewandte Chemie International Edition, 2004, 43(7): 788–824

DOI PMID

11
Endo T, Koizumi S. Microbial conversion with cofactor regeneration using genetically engineered bacteria. Advanced Synthesis & Catalysis, 2001, 343(6–7): 521–526

DOI

12
Ogawa J, Shimizu S. Industrial microbial enzymes: Their discovery by screening and use in large-scale production of useful chemicals in Japan. Current Opinion in Biotechnology, 2002, 13(4): 367–375

DOI PMID

13
Lee S Y. High cell-density culture of Escherichia coli. Trends in Biotechnology, 1996, 14(3): 98–105

DOI PMID

14
Chen N, Huang J, Feng Z B, Yu L, Xu Q Y, Wen T Y. Optimization of fermentation conditions for the biosynthesis of L-threonine by Escherichia coli. Applied Biochemistry and Biotechnology, 2009, 158(3): 595–604

DOI PMID

15
Amrane A, Prigent Y. Lactic acid production from lactose in batch culture: analysis of the data with the help of a mathematical model; relevance for nitrogen source and preculture assessment. Applied Microbiology and Biotechnology, 1994, 40(5): 644–649

DOI

16
Son H J, Heo M S, Kim Y G, Lee S J. Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Biotechnology and Applied Biochemistry, 2001, 33(1): 1–5

DOI PMID

17
Raza W, Yang X, Wu H, Huang Q, Xu Y, Shen Q. Evaluation of metal ions (Zn2+, Fe3+ and Mg2+) effect on the production of fusaricidin-type antifungal compounds by Paenibacillus polymyxa SQR-21. Bioresource Technology, 2010, 101(23): 9264–9271

DOI PMID

18
Jiang Y, Liu W, Cheng T, Cao Y, Zhang R, Xian M. Characterization of D-xylonate dehydratase YjhG from Escherichia coli. Bioengineered, 2015, 6(4): 227–232

DOI PMID

19
Jones P G, VanBogelen R A, Neidhardt F C. Induction of proteins in response to low temperature in Escherichia coli. Journal of Bacteriology, 1987, 169(5): 2092–2095

DOI PMID

20
Sun L, Yang F, Sun H, Zhu T, Li X, Li Y, Xu Z, Zhang Y. Synthetic pathway optimization for improved 1,2,4-butanetriol production. Journal of Industrial Microbiology & Biotechnology, 2016, 43(1): 67–78

DOI PMID

21
Wang X, Xu N, Hu S, Yang J, Gao Q, Xu S, Chen K, Ouyang P. d-1,2,4-Butanetriol production from renewable biomass with optimization of synthetic pathway in engineered Escherichia coli. Bioresource Technology, 2018, 250: 406–412

DOI PMID

Outlines

/