Frontiers of Chemical Science and Engineering >
Polypyrrole@NiCo hybrid nanotube arrays as high performance electrocatalyst for hydrogen evolution reaction in alkaline solution
Received date: 14 Feb 2018
Accepted date: 12 Mar 2018
Published date: 18 Sep 2018
Copyright
The polypyrrole(PPy)@NiCo hybrid nanotube arrays have been successfully fabricated as a high performance electrocatalyst for hydrogen evolution reaction (HER) in alkaline solution. The strong electronic interactions between PPy and NiCo alloy are confirmed by X-ray photoelectron spectroscopy and Raman spectra. Because these interations can remarkably reduce the apparent activation energy (Ea) for HER and enhance the turnover frequency of catalysts, the electrocatalytic performance of PPy@NiCo hybrid nanotube arrays are significantly improved. The electrochemical tests show that the PPy@NiCo hybrid catalysts exhibit a low overpotential of ~186 mV at 10.0 mA·cm−2 and a small tafel slope of 88.6 mV·deg−1 for HER in the alkaline solution. The PPy@NiCo hybrid nanotubes also exhibit high catalytic activity and high stability for HER.
Shenghua Ye , Gaoren Li . Polypyrrole@NiCo hybrid nanotube arrays as high performance electrocatalyst for hydrogen evolution reaction in alkaline solution[J]. Frontiers of Chemical Science and Engineering, 2018 , 12(3) : 473 -480 . DOI: 10.1007/s11705-018-1724-9
1 |
Long X, Li G, Wang Z, Zhu H, Zhang T, Xiao S, Guo W, Yang S. Metallic iron-nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media. Journal of the American Chemical Society, 2015, 137(37): 11900–11903
|
2 |
Cheng L, Huang W, Gong Q, Liu C, Liu Z, Li Y, Dai H. Ultratin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution. Angewandte Chemie International Edition, 2014, 53(30): 7860–7863
|
3 |
Tian J, Liu Q, Asiri A M, Sun X. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. Journal of the American Chemical Society, 2014, 136(21): 7587–7589
|
4 |
Liu Q, Xie L S, Liu Z A, Du G, Asiri A M, Sun X P. A Zn-doped Ni3S2 nanosheet array as a high-perpformance electrochemical water oxidation catalyst in alkaline solution. Chemical Communications, 2017, 53(92): 12446–12449
|
5 |
Xie M W, Xiong X L, Yang L, Shi X F, Asiri A M, Sun X P. An Fe(TCNQ)2 nanowire array on Fe foil: An efficient non-noble-metal catalyst for the oxygen evolution reaction in alkaline media. Chemical Communications, 2018, 54(18): 2300–2303
|
6 |
You C, Ji Y Y, Liu Z A, Xiong X L, Sun X P. Ultrathin CoFe-borate coated CoFe-layered double hydroxide nanosheets array: A non-noble-metal 3D catalyst electrode for efficient and durable water oxidation in potassium borate. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1527–1531
|
7 |
Xiong X L, Ji Y Y, Xie M W, You C, Yang L, Liu Z A, Asiri A M, Sun X P. MnO2-CoP3 nanowire array: An efficient electrocatalyst for alkaline oxygen evolution reaction with enhanced activity. Electrochemistry Communications, 2018, 86: 161–165
|
8 |
Xie F Y, Wu H L, Mou J R, Lin D M, Xu C G, Wu C, Sun X P. Ni3N@Ni-Ci nanoarray as a highly active and durable non-noble-metal electrocatalyst for water oxidation at near-neutral pH. Journal of Catalysis, 2017, 356: 165–172
|
9 |
Yan H, Tian C, Wang L, Wu A, Meng M, Zhao L, Fu H. Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angewandte Chemie International Edition, 2015, 54(21): 6325–6329
|
10 |
Vrubel H, Hu X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angewandte Chemie International Edition, 2012, 124(51): 12875–12878
|
11 |
Gao M R, Liang J X, Zheng Y R, Xu Y F, Jiang J, Gao Q, Li J, Yu S H. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nature Communications, 2015, 6(1): 5982
|
12 |
Morales-Guio C G, Liardet L, Mayer M T, Tilley S D, Grätzel M, Hu X. Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts. Angewandte Chemie International Edition, 2015, 54(2): 664–667
|
13 |
Kanan M W, Nocera D G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co3+. Science, 2008, 321(5892): 1072–1075
|
14 |
Smith E D L, Prếvot M S, Fagan R D, Zhang Z, Sedach P A, Siu M K J, Trudel S, Berlinguette C P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science, 2013, 340(6128): 60–63
|
15 |
McCrory C L, Jung S, Peters J C, Jaramillo T F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. Journal of the American Chemical Society, 2013, 135(45): 16977–16987
|
16 |
Anantharaj S, Rao Ede S, Sakthikumar K, Karthick K, Mishra S, Kundu S. Recent trends and perspectives in electrochemical water splitting with an emphasis to sulphide, selenide and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catalysis, 2016, 6(12): 8069–8097
|
17 |
Yin H, Zhao S, Zhao K, Muqsit A, Tang H, Chang L, Zhao H, Gao Y, Tang Z. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nature Communications, 2015, 6(1): 6430
|
18 |
Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q, Santori E A, Lewis N S. Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473
|
19 |
Hall D E. Electrodes for alkaline water electrolysis. Journal of the Electrochemical Society, 1981, 128(4): 740–746
|
20 |
Brown D E, Mahmood M N, Turner A K, Hall S M, Fogarty P O. Low overvoltage electrocatalysts for hydrogen evolving electrodes. International Journal of Hydrogen Energy, 1982, 7(5): 405–410
|
21 |
Brown D E, Mahmood M N, Man M C, Turner A K. Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solution. Electrochimica Acta, 1984, 29(11): 1551–1556
|
22 |
Raj I A, Vasu K I. Transition metal-based hydrogen electrodes in alkaline solution-electrocatalysis on nickel based binary alloy coatings. Journal of Applied Electrochemistry, 1990, 20(1): 32–38
|
23 |
Nocera D G. The artificial leaf. Accounts of Chemical Research, 2012, 45(5): 767–776
|
24 |
Gong M, Zhou W, Tsai M C, Zhou J, Guan M, Lin M C, Zhang B, Hu Y, Wang D, Yang J, et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nature Communications, 2014, 5: 4695
|
25 |
Yan H. Platinum-based electrocatalysts with core-shell nanostructures. Angewandte Chemie International Edition, 2011, 50(1): 2674–2676
|
26 |
Sasaki K, Naohara H, Cai Y, Choi M, Liu P, Vukmirovic M B, Wang J X, Adzic R R. Core-protected platinum monolayer shell high-stability electrocatalysts for fuel cell cathodes. Angewandte Chemie, 2010, 49(46): 8602–8607
|
27 |
Zhang J, Vukmirovic M B, Xu Y, Mavrikakis M, Adzic R R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angewandte Chemie, 2005, 44(14): 2132–2135
|
28 |
Luo J, Wang L, Mott D, Njoki P N, Lin Y, He T, Xu Z, Wanjana B N, Lim I S, Zhong C J. Core/shell nanoparticles as electrocatalysts for fuel cell reactions. Advanced Materials, 2008, 20(22): 4342–4347
|
29 |
Liu Z, Jackson G I S, Eichhorn B W. PtSn intermetallic, core-shell, and alloy nanoparticles as CO-tolerant electrocatalysts for H2 oxidation. Angewandte Chemie, 2010, 49(18): 3173–3176
|
30 |
Ghosh T, Vukmirovic M, Disalvo F, Adzic R R. Intermetallics as novel supports for Pt monolayer O2 reduction electrocatalysts: Potential for significantly improving properties. Journal of the American Chemical Society, 2010, 132(3): 906–907
|
31 |
Wang A L, Xu H, Feng J X, Ding L X, Tong Y X, Li G R. Design of Pd/PANI/Pd sandwich-structured nanotube array catalysts with special shape effect and synergistic effects for ethanol electrooxidation. Journal of the American Chemical Society, 2013, 135(29): 10703–10709
|
32 |
Xu H, Ding L X, Liang C L, Tong Y X, Li G R. High-performance polypyrrole functionalized PtPdelectrocatalysts based on PtPd@PPy@PtPd three-layered nanotube arrays for electrooxidation of small organic molecules. NPG Asia Materials, 2013, 5(5): e69
|
33 |
Hu M J, Zhang Y, Lu S, Guo S R, Lin B, Zhang M, Yu S H. High yield synthesis of bracelet-like hydrophilic Ni-Co magnetic alloy flux-closure nanorings. Journal of the American Chemical Society, 2008, 130(35): 11606–11607
|
34 |
Cioffi N, Torsi L, Losito I, Franco C, Bari I, Chiavarone L, Scamarcio G, Tesakov V, Sabbatini L, Zambonin P. Electrosynthesis and analytical characterization of polypyrrole thin film. Journal of Materials Chemistry, 2001, 11: 1434–1440
|
35 |
Zhang X, Bai R. Surface electric properties of polypyrrole in aqueous solutions. Langmuir, 2003, 19(26): 10703–10709
|
36 |
Jaramillo A, Spurlock L D, Young V, Toth A B. XPS characterization of nanosized overoxidized polypyrrole film on graphite electrodes. Analyst (London), 1999, 124(8): 1215–1221
|
37 |
Bard A J, Faulkner L R. Electrochemical Method. New York: Wiley, 1980, 87
|
38 |
Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou X W, Xie Y. Defect-rivh MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Advanced Materials, 2013, 11(40): 5807–5813
|
39 |
Chen Z, Cummins D, Reinecke B N, Clark E, Sunkara M K, Jaramillo T F. Jaramillo. F. Core-shell MoO3-MoS2 nanowire fore hydrogen evolution: A functional design for electrocatalytic materials. Nano Letters, 2011, 11(10): 4168–4175
|
40 |
Benck J D, Chen Z, Kuritzky L Y, Forman A J, Jaramillo T F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insight into the origin of their catalytic activity. ACS Catalysis, 2012, 2(9): 1916–1923
|
41 |
Machado S A S, Tiengo J, Lima Neto P D, Avaca L A. The influence pf H-absorption on the cathodic response of high area nickel electrodes in alkaline solutions. Electrochimica Acta, 1994, 39(11): 1757–1761
|
42 |
Ahn S H, Hwang S J, Yoo S J, Choi I, Kim H J, Jang J H, Nam S W, Lim T H, Lim T, Kim S K,
|
43 |
Wu L, Li Q, Wu C H, Zhu H, Mendoza-Garcia A, Shen B, Guo J, Sun S. Stable cobalt nanoparticles and their monolayer array as an efficient electrocatalyst for oxygen evolution reaction. Journal of the American Chemical Society, 2015, 137(22): 7071–7074 doi:10.1021/jacs.5b04142
|
/
〈 | 〉 |