COMMUNICATION

Polypyrrole@NiCo hybrid nanotube arrays as high performance electrocatalyst for hydrogen evolution reaction in alkaline solution

  • Shenghua Ye ,
  • Gaoren Li
Expand
  • MOE Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China

Received date: 14 Feb 2018

Accepted date: 12 Mar 2018

Published date: 18 Sep 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

The polypyrrole(PPy)@NiCo hybrid nanotube arrays have been successfully fabricated as a high performance electrocatalyst for hydrogen evolution reaction (HER) in alkaline solution. The strong electronic interactions between PPy and NiCo alloy are confirmed by X-ray photoelectron spectroscopy and Raman spectra. Because these interations can remarkably reduce the apparent activation energy (Ea) for HER and enhance the turnover frequency of catalysts, the electrocatalytic performance of PPy@NiCo hybrid nanotube arrays are significantly improved. The electrochemical tests show that the PPy@NiCo hybrid catalysts exhibit a low overpotential of ~186 mV at 10.0 mA·cm2 and a small tafel slope of 88.6 mV·deg1 for HER in the alkaline solution. The PPy@NiCo hybrid nanotubes also exhibit high catalytic activity and high stability for HER.

Cite this article

Shenghua Ye , Gaoren Li . Polypyrrole@NiCo hybrid nanotube arrays as high performance electrocatalyst for hydrogen evolution reaction in alkaline solution[J]. Frontiers of Chemical Science and Engineering, 2018 , 12(3) : 473 -480 . DOI: 10.1007/s11705-018-1724-9

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 91645104), the National Basic Research Program of China (Grant Nos. 2015CB-932304 and 2016YFA0202603), the Natural Science Foundation of Guangdong Province (Nos. S2013020012833 and 2016A010104004), and the Fundamental Research Fund for the Central Universities (No. 16lgjc67).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-018-1724-9 and is accessible for authorized users.
1
Long X, Li G, Wang Z, Zhu H, Zhang T, Xiao S, Guo W, Yang S. Metallic iron-nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media. Journal of the American Chemical Society, 2015, 137(37): 11900–11903

DOI

2
Cheng L, Huang W, Gong Q, Liu C, Liu Z, Li Y, Dai H. Ultratin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution. Angewandte Chemie International Edition, 2014, 53(30): 7860–7863

DOI

3
Tian J, Liu Q, Asiri A M, Sun X. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. Journal of the American Chemical Society, 2014, 136(21): 7587–7589

DOI

4
Liu Q, Xie L S, Liu Z A, Du G, Asiri A M, Sun X P. A Zn-doped Ni3S2 nanosheet array as a high-perpformance electrochemical water oxidation catalyst in alkaline solution. Chemical Communications, 2017, 53(92): 12446–12449

DOI

5
Xie M W, Xiong X L, Yang L, Shi X F, Asiri A M, Sun X P. An Fe(TCNQ)2 nanowire array on Fe foil: An efficient non-noble-metal catalyst for the oxygen evolution reaction in alkaline media. Chemical Communications, 2018, 54(18): 2300–2303

DOI

6
You C, Ji Y Y, Liu Z A, Xiong X L, Sun X P. Ultrathin CoFe-borate coated CoFe-layered double hydroxide nanosheets array: A non-noble-metal 3D catalyst electrode for efficient and durable water oxidation in potassium borate. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1527–1531

DOI

7
Xiong X L, Ji Y Y, Xie M W, You C, Yang L, Liu Z A, Asiri A M, Sun X P. MnO2-CoP3 nanowire array: An efficient electrocatalyst for alkaline oxygen evolution reaction with enhanced activity. Electrochemistry Communications, 2018, 86: 161–165

DOI

8
Xie F Y, Wu H L, Mou J R, Lin D M, Xu C G, Wu C, Sun X P. Ni3N@Ni-Ci nanoarray as a highly active and durable non-noble-metal electrocatalyst for water oxidation at near-neutral pH. Journal of Catalysis, 2017, 356: 165–172

DOI

9
Yan H, Tian C, Wang L, Wu A, Meng M, Zhao L, Fu H. Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angewandte Chemie International Edition, 2015, 54(21): 6325–6329

DOI

10
Vrubel H, Hu X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angewandte Chemie International Edition, 2012, 124(51): 12875–12878

DOI

11
Gao M R, Liang J X, Zheng Y R, Xu Y F, Jiang J, Gao Q, Li J, Yu S H. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nature Communications, 2015, 6(1): 5982

DOI

12
Morales-Guio C G, Liardet L, Mayer M T, Tilley S D, Grätzel M, Hu X. Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts. Angewandte Chemie International Edition, 2015, 54(2): 664–667

13
Kanan M W, Nocera D G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co3+. Science, 2008, 321(5892): 1072–1075

DOI

14
Smith E D L, Prếvot M S, Fagan R D, Zhang Z, Sedach P A, Siu M K J, Trudel S, Berlinguette C P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science, 2013, 340(6128): 60–63

DOI

15
McCrory C L, Jung S, Peters J C, Jaramillo T F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. Journal of the American Chemical Society, 2013, 135(45): 16977–16987

DOI

16
Anantharaj S, Rao Ede S, Sakthikumar K, Karthick K, Mishra S, Kundu S. Recent trends and perspectives in electrochemical water splitting with an emphasis to sulphide, selenide and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catalysis, 2016, 6(12): 8069–8097

DOI

17
Yin H, Zhao S, Zhao K, Muqsit A, Tang H, Chang L, Zhao H, Gao Y, Tang Z. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nature Communications, 2015, 6(1): 6430

DOI

18
Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q, Santori E A, Lewis N S. Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473

DOI

19
Hall D E. Electrodes for alkaline water electrolysis. Journal of the Electrochemical Society, 1981, 128(4): 740–746

DOI

20
Brown D E, Mahmood M N, Turner A K, Hall S M, Fogarty P O. Low overvoltage electrocatalysts for hydrogen evolving electrodes. International Journal of Hydrogen Energy, 1982, 7(5): 405–410

DOI

21
Brown D E, Mahmood M N, Man M C, Turner A K. Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solution. Electrochimica Acta, 1984, 29(11): 1551–1556

DOI

22
Raj I A, Vasu K I. Transition metal-based hydrogen electrodes in alkaline solution-electrocatalysis on nickel based binary alloy coatings. Journal of Applied Electrochemistry, 1990, 20(1): 32–38

DOI

23
Nocera D G. The artificial leaf. Accounts of Chemical Research, 2012, 45(5): 767–776

DOI

24
Gong M, Zhou W, Tsai M C, Zhou J, Guan M, Lin M C, Zhang B, Hu Y, Wang D, Yang J, et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nature Communications, 2014, 5: 4695

DOI

25
Yan H. Platinum-based electrocatalysts with core-shell nanostructures. Angewandte Chemie International Edition, 2011, 50(1): 2674–2676

26
Sasaki K, Naohara H, Cai Y, Choi M, Liu P, Vukmirovic M B, Wang J X, Adzic R R. Core-protected platinum monolayer shell high-stability electrocatalysts for fuel cell cathodes. Angewandte Chemie, 2010, 49(46): 8602–8607

DOI

27
Zhang J, Vukmirovic M B, Xu Y, Mavrikakis M, Adzic R R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angewandte Chemie, 2005, 44(14): 2132–2135

DOI

28
Luo J, Wang L, Mott D, Njoki P N, Lin Y, He T, Xu Z, Wanjana B N, Lim I S, Zhong C J. Core/shell nanoparticles as electrocatalysts for fuel cell reactions. Advanced Materials, 2008, 20(22): 4342–4347

DOI

29
Liu Z, Jackson G I S, Eichhorn B W. PtSn intermetallic, core-shell, and alloy nanoparticles as CO-tolerant electrocatalysts for H2 oxidation. Angewandte Chemie, 2010, 49(18): 3173–3176

DOI

30
Ghosh T, Vukmirovic M, Disalvo F, Adzic R R. Intermetallics as novel supports for Pt monolayer O2 reduction electrocatalysts: Potential for significantly improving properties. Journal of the American Chemical Society, 2010, 132(3): 906–907

DOI

31
Wang A L, Xu H, Feng J X, Ding L X, Tong Y X, Li G R. Design of Pd/PANI/Pd sandwich-structured nanotube array catalysts with special shape effect and synergistic effects for ethanol electrooxidation. Journal of the American Chemical Society, 2013, 135(29): 10703–10709

DOI

32
Xu H, Ding L X, Liang C L, Tong Y X, Li G R. High-performance polypyrrole functionalized PtPdelectrocatalysts based on PtPd@PPy@PtPd three-layered nanotube arrays for electrooxidation of small organic molecules. NPG Asia Materials, 2013, 5(5): e69

DOI

33
Hu M J, Zhang Y, Lu S, Guo S R, Lin B, Zhang M, Yu S H. High yield synthesis of bracelet-like hydrophilic Ni-Co magnetic alloy flux-closure nanorings. Journal of the American Chemical Society, 2008, 130(35): 11606–11607

DOI

34
Cioffi N, Torsi L, Losito I, Franco C, Bari I, Chiavarone L, Scamarcio G, Tesakov V, Sabbatini L, Zambonin P. Electrosynthesis and analytical characterization of polypyrrole thin film. Journal of Materials Chemistry, 2001, 11: 1434–1440

DOI

35
Zhang X, Bai R. Surface electric properties of polypyrrole in aqueous solutions. Langmuir, 2003, 19(26): 10703–10709

DOI

36
Jaramillo A, Spurlock L D, Young V, Toth A B. XPS characterization of nanosized overoxidized polypyrrole film on graphite electrodes. Analyst (London), 1999, 124(8): 1215–1221

DOI

37
Bard A J, Faulkner L R. Electrochemical Method. New York: Wiley, 1980, 87

38
Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou X W, Xie Y. Defect-rivh MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Advanced Materials, 2013, 11(40): 5807–5813

DOI

39
Chen Z, Cummins D, Reinecke B N, Clark E, Sunkara M K, Jaramillo T F. Jaramillo. F. Core-shell MoO3-MoS2 nanowire fore hydrogen evolution: A functional design for electrocatalytic materials. Nano Letters, 2011, 11(10): 4168–4175

DOI

40
Benck J D, Chen Z, Kuritzky L Y, Forman A J, Jaramillo T F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insight into the origin of their catalytic activity. ACS Catalysis, 2012, 2(9): 1916–1923

DOI

41
Machado S A S, Tiengo J, Lima Neto P D, Avaca L A. The influence pf H-absorption on the cathodic response of high area nickel electrodes in alkaline solutions. Electrochimica Acta, 1994, 39(11): 1757–1761

DOI

42
Ahn S H, Hwang S J, Yoo S J, Choi I, Kim H J, Jang J H, Nam S W, Lim T H, Lim T, Kim S K, Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis. Journal of Materials Chemistry, 2012, 22(30): 15153–15159

DOI

43
Wu L, Li Q, Wu C H, Zhu H, Mendoza-Garcia A, Shen B, Guo J, Sun S. Stable cobalt nanoparticles and their monolayer array as an efficient electrocatalyst for oxygen evolution reaction. Journal of the American Chemical Society, 2015, 137(22): 7071–7074 doi:10.1021/jacs.5b04142

Outlines

/