REVIEW ARTICLE

Recent advances on metal-free graphene-based catalysts for the production of industrial chemicals

  • Zhiyong Wang 1,2 ,
  • Yuan Pu 1,2 ,
  • Dan Wang , 1,2 ,
  • Jie-Xin Wang 1,2 ,
  • Jian-Feng Chen 1,2
Expand
  • 1. Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
  • 2. Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China

Received date: 23 Jan 2018

Accepted date: 03 Mar 2018

Published date: 03 Jan 2019

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

With the development of carbon catalysts, graphene-based metal-free catalysts have drawn increasing attention in both scientific research and in industrial chemical production processes. In recent years, the catalytic activities of metal-free catalysts have significantly improved and they have become promising alternatives to traditional metal-based catalysts. The use of metal-free catalysts greatly improves the sustainability of chemical processes. In view of this, the recent progress in the preparation of graphene-based metal-free catalysts along with their applications in catalytic oxidation, reduction and coupling reactions are summarized in this review. The future trends and challenges for the design of graphene-based materials for industrial organic catalytic reactions with good stabilities and high catalytic performance are also discussed.

Cite this article

Zhiyong Wang , Yuan Pu , Dan Wang , Jie-Xin Wang , Jian-Feng Chen . Recent advances on metal-free graphene-based catalysts for the production of industrial chemicals[J]. Frontiers of Chemical Science and Engineering, 2018 , 12(4) : 855 -866 . DOI: 10.1007/s11705-018-1722-y

Acknowledgments

We are grateful for financial support from the National Natural Science Foundation of China (Grant Nos. 21620102007 and 21622601), the Fundamental Research Funds for the Central Universities of China (No. BUCTRC201601), and the “111” project of China (No. B14004).
1
Chowdhury A D, Houben K, Whiting G T, Chung S H, Baldus M, Weckhuysen B M. Electrophilic aromatic substitution over zeolites generates Wheland-type reaction intermediates. Nature Catalysis, 2017, 1(1): 23–31

DOI

2
Hasany M, Malakootikhah M, Rahmanian V, Yaghmaei S. Effect of hydrogen combustion reaction on the dehydrogenation of ethane in a fixed-bed catalytic membrane reactor. Chinese Journal of Chemical Engineering, 2015, 23(8): 1316–1325

DOI

3
Koven A B, Tong S S, Farnood R R, Jia C Q. Alkali-thermal gasification and hydrogen generation potential of biomass. Frontiers of Chemical Science and Engineering, 2017, 11(3): 369–378

DOI

4
Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M, Zhang H. Recent advances in ultrathin two-dimensional nanomaterials. Chemical Reviews, 2017, 117(9): 6225–6331

DOI

5
Georgakilas V, Perman J A, Tucek J, Zboril R. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chemical Reviews, 2015, 115(11): 4744–4822

DOI

6
Ye M, Zhang Z, Zhao Y, Qu L. Graphene platforms for smart energy generation and storage. Joule, 2018, 2(2): 1–24

DOI

7
Wang D, Zhu L, Chen J F, Dai L. Can graphene quantum dots cause DNA damage in cells? Nanoscale, 2015, 7(21): 9894–9901

DOI

8
Tao H, Gao Y, Talreja N, Guo F, Texter J, Yan C, Sun Z. Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(16): 7257–7284

DOI

9
Salehi E, Soroush F, Momeni M, Barati A, Khakpour A. Chitosan/polyethylene glycol impregnated activated carbons: Synthesis, characterization and adsorption performance. Frontiers of Chemical Science and Engineering, 2017, 11(4): 575–585

DOI

10
Xiang Z, Wang D, Xue Y, Dai L, Chen J F, Cao D. PAF-derived nitrogen-doped 3D carbon materials for efficient energy conversion and storage. Scientific Reports, 2015, 5(1): 8307–8314

DOI

11
Liu X, Dai L. Carbon-based metal-free catalysts. Nature Reviews Materials, 2016, 1(11): 16064–16075

DOI

12
Su D S, Wen G, Wu S, Peng F, Schlögl R. Carbocatalysis in liquid-phase reactions. Angewandte Chemie International Edition, 2017, 56(4): 936–964

DOI

13
Wang D, Wang Z, Zhan Q, Pu Y, Wang J X, Foster N R, Dai L. Facile and scalable preparation of fluorescent carbon dots for multifunctional applications. Engineering, 2017, 3(3): 402–408

DOI

14
Lv G, Wang H, Yang Y, Deng T, Chen C, Zhu Y, Hou X. Graphene oxide: A convenient metal-free carbocatalyst for facilitating aerobic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran. ACS Catalysis, 2015, 5(8): 5636–5646

DOI

15
Wang S, Li Y, Fan X, Zhang F, Zhang G. β-Cyclodextrin functionalized graphene oxide: An efficient and recyclable adsorbent for the removal of dye pollutants. Frontiers of Chemical Science and Engineering, 2015, 9(1): 77–83

DOI

16
Liu Z, Wang W, Ju X, Xie R, Chu L. Graphene-based membranes for molecular and ionic separations in aqueous environments. Chinese Journal of Chemical Engineering, 2017, 25(11): 1598–1605

DOI

17
Kong X K, Chen C L, Chen Q W. Doped graphene for metal-free catalysis. Chemical Society Reviews, 2014, 43(8): 2841–2857

DOI

18
Deng D, Novoselov K S, Fu Q, Zheng N, Tian Z, Bao X. Catalysis with two-dimensional materials and their heterostructures. Nature Nanotechnology, 2016, 11(3): 218–230

DOI

19
Dai L, Xue Y, Qu L, Choi H J, Baek J B. Metal-free catalysts for oxygen reduction reaction. Chemical Reviews, 2015, 115(11): 4823–4892

DOI

20
Shinde S S, Lee C H, Sami A, Kim D H, Lee S U, Lee J H. Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn-Air batteries. ACS Nano, 2017, 11(1): 347–357

DOI

21
Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature, 2011, 469(7330): 389–392

DOI

22
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669

DOI

23
Tang P, Hu G, Li M, Ma D. Graphene-based metal-free catalysts for catalytic reactions in the liquid phase. ACS Catalysis, 2016, 6(10): 6948–6958

DOI

24
Ma Y, Chen Y. Three-dimensional graphene networks: Synthesis, properties and applications. National Science Review, 2015, 2(1): 40–53

DOI

25
Senthilkumar K, Prabakar S R, Park C, Jeong S, Lah M S, Pyo M. Graphene oxide self-assembled with a cationic fullerene for high performance pseudo-capacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(5): 1663–1670

DOI

26
Kim J, Sang W K, Yun H, Kim B J. Impact of size control of graphene oxide nanosheets for enhancing electrical and mechanical properties of carbon nanotube-polymer composites. RSC Advances, 2017, 7(48): 30221–30228

DOI

27
Ambrosetti A, Silvestrelli P L. Adsorption of rare-gas atoms and water on graphite and graphene by van der waals-corrected density functional theory. Journal of Physical Chemistry C, 2017, 115(9): 3695–3702

DOI

28
Esfandiyari T, Nasirizadeh N, Dehghani M, Ehrampoosh M H. Graphene oxide based carbon composite as adsorbent for Hg removal: Preparation, characterization, kinetics and isotherm studies. Chinese Journal of Chemical Engineering, 2017, 25(9): 1170–1175

DOI

29
Kato R, Minami S, Koga Y, Hasegawa M. High growth rate chemical vapor deposition of graphene under low pressure by RF plasma assistance. Carbon, 2016, 96: 1008–1013

DOI

30
Kim S, Song Y, Heller M J. Seamless aqueous arc discharge process for producing graphitic carbon nanostructures. Carbon, 2017, 120: 83–88

DOI

31
Patil I M, Lokanathan M, Kakade B. Three dimensional nanocomposite of reduced graphene oxide and hexagonal boron nitride as an efficient metal-free catalyst for oxygen electroreduction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(12): 4506–4515

DOI

32
Tam T V, Kang S G, Babu K F, Oh E S, Leeb S G, Choi W M. Synthesis of B-doped graphene quantum dots as metal-free electrocatalyst for oxygen reduction reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(21): 10537–10543

DOI

33
Lerf A, He H, Forster M, Klinowski J. Structure of graphite oxide revisited. Journal of Physical Chemistry B, 1998, 102(23): 4477–4482

DOI

34
Haag D R, Kung H H. Metal free graphene based catalysts: A review. Topics in Catalysis, 2014, 57(6-9): 762–773

DOI

35
Tu W, Zhou Y, Zou Z. Versatile graphene-promoting photocatalytic performance of semiconductors: Basic principles, synthesis, solar energy conversion, and environmental applications. Advanced Functional Materials, 2013, 23(40): 4996–5008

DOI

36
Shao P, Tian J, Yang F, Duan X, Gao S, Shi W, Luo X, Cui F, Luo S, Wang S. Identification and regulation of active sites on nanodiamonds: Establishing a highly efficient catalytic system for oxidation of organic contaminants. Advanced Functional Materials, 2018, 28(13): 1705295–1705302

DOI

37
Hummers W S Jr, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339–1339

DOI

38
Chen J, Li Y, Huang L, Li C, Shi G. High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon, 2015, 81(1): 826–834

DOI

39
Bai J, Sun H, Yin X, Yin X, Wang S, Creamer A E, Xu L, Qin Z, He F, Gao B. Oxygen-content-controllable graphene oxide from electron-beam-irradiated graphite: Synthesis, characterization, and removal of aqueous lead. ACS Applied Materials & Interfaces, 2016, 8(38): 25289–25296 (Pb(II) )

DOI

40
Gao Y J, Hu G, Zhong J, Shi Z J, Zhu Y S, Su D S, Wang J G, Bao X H, Ma D. Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation. Angewandte Chemie International Edition, 2013, 52(7): 2109–2113

DOI

41
Kumar R, Singh R K, Vaz A R, Savu R, Moshkalev S A. Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high performance supercapacitor electrode. ACS Applied Materials & Interfaces, 2017, 9(10): 8880–8890

DOI

42
Hu G, Xu C, Sun Z, Wang S, Cheng H M, Li F, Ren W. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries. Advanced Materials, 2016, 28(8): 1603–1609

DOI

43
Mu X, Yuan B, Feng X, Qiu S, Song L, Hu Y. The effect of doped heteroatoms (nitrogen, boron, phosphorus) on inhibition thermal oxidation of reduced graphene oxide. RSC Advances, 2016, 6(107): 105021–105029

DOI

44
Aunkor M H, Mahbubul I M, Saidurb R, Metselaar H C. The green reduction of graphene oxide. RSC Advances, 2016, 6(33): 27807–27828

DOI

45
Sykam N, Rao G M. Room temperature synthesis of reduced graphene oxide nanosheets as anode material for supercapacitors. Materials Letters, 2014, 204: 169–172

DOI

46
Kong X K, Sun Z, Chen M, Chen C, Chen Q W. Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. Energy & Environmental Science, 2013, 6(11): 3260–3266

DOI

47
Xu K, Fu Y, Zhou Y, Hennersdorf F, Machata P, Vincon I, Weigand J J, Popov A A, Berger R, Feng X. Cationic nitrogen-doped helical nanographenes. Angewandte Chemie International Edition, 2017, 56(50): 15876–15881

DOI

48
Tao H, Yan C, Robertson A W, Gao Y, Ding J, Zhang Y, Maa T, Sun Z. N-doping of graphene oxide at low temperature for the oxygen reduction reaction. Chemical Communications, 2017, 53(5): 873–876

DOI

49
Wang X, Sun G, Routh P, Kim D H, Huang W, Chen P. Heteroatom-doped graphene materials: Syntheses, properties and applications. Chemical Society Reviews, 2014, 43(20): 7067–7098

DOI

50
Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Letters, 2009, 9(5): 1752–1758

DOI

51
Vineesh T V, Kumar M P, Takahashi C, Kalita G, Alwarappan S, Pattanayak D K, Narayanan T N. Bifunctional electrocatalytic activity of boron-doped graphene derived from boron carbide. Advanced Energy Materials, 2015, 5(17): 1500658–1500665

DOI

52
Putri L K, Ng B J, Ong W J, Lee H W, Chang W S, Chai S P. Heteroatom nitrogen- and boron-doping as a facile strategy to improve photocatalytic activity of standalone reduced graphene oxide in hydrogen evolution. ACS Applied Materials & Interfaces, 2017, 9(5): 4558–4569

DOI

53
Fang Y, Wang X. Metal-free boron-containing heterogeneous catalysts. Angewandte Chemie International Edition, 2017, 56(49): 15506–15518

DOI

54
Yu C, Liu Z, Meng X, Lu B, Cui D, Qiu J. Nitrogen and phosphorus dual-doped graphene as a metal-free high-efficiency electrocatalyst for triiodide reduction. Nanoscale, 2016, 8(40): 17458–17464

DOI

55
Xu J, Shui J, Wang J, Wang M, Liu H K, Dou S X, Jeon I Y, Seo J M, Baek J B, Dai L. Sulfur graphene nanostructured cathodes via ball-milling for highperformance lithium sulfur batteries. ACS Nano, 2014, 8(10): 10920–10930

DOI

56
Xu J, Jeon I Y, Seo J M, Dou S, Dai L, Baek J B. Edge-selectively halogenated graphene nanoplatelets (XGnPs, X= Cl, Br, or I) prepared by ball-milling and used as anode materials for lithium-ion batteries. Advanced Materials, 2014, 26(43): 7317–7323

DOI

57
Xu J, Ma J, Fan Q, Guo S, Dou S. Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X= O2, S, Se, Te, I2, Br2) batteries. Advanced Materials, 2017, 29(28): 1606454–1606473

DOI

58
Xiang Z, Cao D, Huang L, Shui J, Wang M, Dai L. Nitrogen-doped holey graphitic carbon from 2D covalent organic polymers for oxygen reduction. Advanced Materials, 2014, 26(2): 3315–3320

DOI

59
Zhang J, Dai L. Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angewandte Chemie International Edition, 2016, 55(42): 13296–13300

DOI

60
Du R, Zhao Q, Zhang N, Zhang J. Macroscopic carbon nanotube-based 3D monoliths. Small, 2015, 11(27): 3263–3289

DOI

61
Worsley M A, Charnvanichborikarn S, Montalvo E, Shin S J, Tylski E D, Lewicki J P, Nelson A J, Satcher J H Jr, Biener J, Baumann T F, Toward macroscale, isotropic carbons with graphene-sheet-like electrical and mechanical properties. Advanced Functional Materials, 2014, 24(27): 4259–4264

DOI

62
Charon E, Rouzaud J N, Aléon J. Graphitization at low temperatures (600–1200 °C) in the presence of iron implications in planetology. Carbon, 2014, 66: 178–190

DOI

63
Xia J, Zhang N, Chong S, Li D, Chen Y, Sun C. Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for a supercapacitor. Green Chemistry, 2018, 20(3): 694–700

DOI

64
Wang H, Li X B, Gao L, Wu H L, Yang J, Cai L, Ma T B, Tung C H, Wu L Z, Yu G. Three-dimensional graphene networks with abundant sharp edge sites for efficient electrocatalytic hydrogen evolution. Angewandte Chemie International Edition, 2018, 57(1): 192–197

DOI

65
Ren H, Tang M, Guan B, Wang K, Yang J, Wang F, Wang M, Shan J, Chen Z, Wei D, Hierarchical graphene foam for effcient omnidirectional solar-thermal energy conversion. Advanced Materials, 2017, 29(38): 1702590–1702596

DOI

66
Shao Y, El-Kady M F, Lin C W, Zhu G, Marsh K L, Hwang J Y, Zhang Q, Li Y, Wang H, Kaner R B. 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Advanced Materials, 2016, 28(31): 6719–6726

DOI

67
Compton B G, Lewis J A. 3D-printing of lightweight cellular composites. Advanced Materials, 2014, 26(34): 5930–5935

DOI

68
Zhu C, Han T Y, Duoss E B, Golobic A M, Kuntz J D, Spadaccini C M, Worsley M A. Highly compressible 3D periodic graphene aerogel microlattices. Nature Communications, 2015, 6(1): 6962–6969

DOI

69
Sha J, Li Y, Salvatierra R V, Wang T, Dong P, Ji Y, Lee S K, Zhang C, Zhang J, Smith R H, Three-dimensional printed graphene foams. ACS Nano, 2017, 11(7): 6860–6867

DOI

70
Qi W, Yan P, Su D S. Oxidative dehydrogenation on nanocarbon: Insights into the reaction mechanism and kinetics via in situ experimental methods. Accounts of Chemical Research, 2018, 51(3): 640–648

DOI

71
Guo X, Qi W, Liu W, Yan P, Li F, Liang C, Su D S. Oxidative dehydrogenation on nanocarbon: Revealing the catalytic mechanism using model catalysts. ACS Catalysis, 2017, 7(2): 1424–1427

DOI

72
Liu W, Chen B, Duan X, Wu K H, Qi W, Guo X, Zhang B, Su D S. Molybdenum carbide modified nanocarbon catalysts for alkane dehydrogenation reactions. ACS Catalysis, 2017, 7(9): 5820–5827

DOI

73
Yang X, Cao Y, Yu H, Huang H, Wang H, Peng F. Unravelling the radical transition during the carbon-catalyzed oxidation of cyclohexane by in situ electron paramagnetic resonance in the liquid phase. Catalysis Science & Technology, 2017, 7(9): 4431–4443

DOI

74
Yang J H, Sun G, Gao Y, Zhao H, Tang P, Tan J, Lu A H, Ma D. Direct catalytic oxidation of benzene to phenol over metal-free graphene-based catalyst. Energy & Environmental Science, 2013, 6(3): 793–798

DOI

75
Indrawirawan S, Sun H, Duan X, Wang S. Low temperature combustion synthesis of nitrogen-doped graphene for metal-free catalytic oxidation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(7): 3432–3440

DOI

76
Duan X, O’Donnell K, Sun H, Wang Y, Wang S. Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions. Small, 2015, 11(25): 3036–3044

DOI

77
Huang Z F, Bao H W, Yao Y Y, Lu W Y, Chen W X. Novel green activation processes and mechanism of peroxymonosulfate based on supported cobalt phthalocyanine catalyst. Applied Catalysis B: Environmental, 2014, 154: 36–43

DOI

78
Diao J, Liu H, Wang J, Feng Z, Chen T, Miao C, Yang W, Su D S. Porous graphene-based material as an efficient metal free catalyst for the oxidative dehydrogenation of ethylbenzene to styrene. Chemical Communications, 2015, 51(16): 3423–3425

DOI

79
Dhakshinamoorthy A, Latorre-Sanchez M, Asiri A M, Primo A, Garcia H. Sulphur-doped graphene as metal-free carbocatalysts for the solventless aerobic oxidation of styrenes. Catalysis Communications, 2015, 65: 10–13

DOI

80
Gonçalves G B, Pires S G, Simoes M Q, Nevesb M S, Marques P P. Three-dimensional graphene oxide: A promising green and sustainable catalyst for oxidation reactions at room temperature. Chemical Communications, 2014, 50(57): 7673–7676

DOI

81
Long J, Xie X, Xu J, Gu Q, Chen L, Wang X. Nitrogen-doped graphene nanosheets as metal-free catalysts for aerobic selective oxidation of benzylic alcohols. ACS Catalysis, 2012, 2(4): 622–631

DOI

82
Rizescu C, Podolean I, Albero J, Parvulescu V I, Coman S M, Bucur C, Puchec M. Garcia H. N-Doped graphene as a metal-free catalyst for glucose oxidation to succinic acid. Green Chemistry, 2017, 19(8): 1999–2005

DOI

83
Gu Q, Wen G, Ding Y, Wu K H, Chen C, Su D. Reduced graphene oxide: A metal-free catalyst for aerobic oxidative desulfurization. Green Chemistry, 2017, 19(4): 1175–1181

DOI

84
Gu S, Wunder S, Lu Y, Ballauff M, Fenger R, Rademann K, Jaquet B, Zaccone A. Kinetic analysis of the catalytic reduction of 4 nitrophenol by metallic nanoparticles. Journal of Physical Chemistry C, 2014, 118(32): 18618–18625

DOI

85
Wang Z, Su R, Wang D, Shi J, Wang J X, Pu Y, Chen J F. Sulfurized graphene as efficient metal-free catalysts for reduction of 4-nitrophenol to 4-aminophenol. Industrial & Engineering Chemistry Research, 2017, 56(46): 13610–13617

DOI

86
Liu J, Yan X, Wang L, Kong L, Jian P. Three-dimensional nitrogen-doped graphene foam as metal-free catalyst for the hydrogenation reduction of p-nitrophenol. Journal of Colloid and Interface Science, 2017, 497: 102–107

DOI

87
Pan J, Song S, Li J, Wang F, Ge X, Yao S, Wang X, Zhang H. Solid ion transition route to 3D S-N-codoped hollow carbon nanosphere/graphene aerogel as a metal-free handheld nanocatalyst for organic reactions. Nano Research, 2017, 10(10): 3486–3495

DOI

88
Qiu B, Xing M, Zhang J. Recent advances in three-dimensional graphene based materials for catalysis applications. Chemical Society Reviews, 2018, 47(6): 2165–2216

DOI

89
Wang Z, Pu Y, Wang D, Shi J, Wang J X, Chen J F. 3D-foam-structured nitrogen-doped graphene-Ni catalyst for highly efficient nitrobenzene reduction. AIChE Journal. American Institute of Chemical Engineers, 2018, 64(4): 1330–1338

DOI

90
Gao Y, Ma D, Wang C, Guan J, Bao X. Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chemical Communications, 2011, 47(8): 2432–2434

DOI

91
Yang F, Chi C, Wang C, Wang Y, Li Y. High graphite N content in nitrogen-doped graphene as an efficient metal-free catalyst for reduction of nitroarenes in water. Green Chemistry, 2016, 18(15): 4254–4262

DOI

92
Hu F, Patel M, Luo F, Flach C, Mendelsohn R, Garfunkel E, He H, Szostak M. Graphene-catalyzed direct friedel-crafts alkylation reactions: mechanism, selectivity, and synthetic utility. Journal of the American Chemical Society, 2015, 137(45): 14473–14480

DOI

93
Gao Y, Tang P, Zhou H, Zhang W, Yang H, Yan N, Hu G, Mei D, Wang J, Ma D. Graphene oxide catalyzed C‒H bond activation: The importance of oxygen functional groups for biaryl construction. Angewandte Chemie, 2016, 128(9): 3176–3180

DOI

94
Yang A, Li J, Zhang C, Zhang W, Ma N. One-step amine modification of graphene oxide to get a green trifunctional metal-free catalyst. Applied Surface Science, 2015, 346: 443–450

DOI

95
Li X H, Antonietti M. Polycondensation of boron- and nitrogen-codoped holey graphene monoliths from molecules: Carbocatalysts for selective oxidation. Angewandte Chemie, 2013, 52(17): 4670–4674

DOI

96
Yang F, Fan X, Wang C, Yang W, Hou L, Xu X, Feng A, Dong S, Chen K, Wang Y, P-doped nanomesh graphene with high-surface-area as an efficient metal-free catalyst for aerobic oxidative coupling of amines. Carbon, 2017, 121: 443–451

DOI

97
Lan D H, Chen L, Au C T, Yin S F. One-pot synthesized multi-functional graphene oxide as a water-tolerant and efficient metal-free heterogeneous catalyst for cycloaddition reaction. Carbon, 2015, 93: 22–31

DOI

98
Lacroix M, Dreibine L, Tymowski B, Vigneron F, Edouard D, Bégin D, Nguyen P, Pham C, Savin-Poncet S, Luck F, Ledoux M J, Pham-Huu C. Silicon carbide foam composite containing cobalt as a highly selective and re-usable Fischer-ropsch synthesis catalyst. Applied Catalysis A, General, 2011, 397(1): 62–72

DOI

99
Li X, Pan X, Yu L, Ren P, Wu X, Sun L, Jiao F, Bao X. Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene. Nature Communications, 2014, 5(1): 3688–3694

100
Haase S, Weiss M, Langsch R, Bauer T, Lange R. Hydrodynamics and mass transfer in three-phase composite minichannel fixed-bed reactors. Chemical Engineering Science, 2013, 94(5): 224–236

DOI

101
Leung P C, Recasens F, Smith J M. Hydration of isobutene in a trickle-bed reactor: Wetting efficiency and mass transfer. AIChE Journal. American Institute of Chemical Engineers, 1987, 33(6): 996–1007

DOI

102
Leveneur S, Wärnå J, Salmi T, Murzin D Y, Estel L. Interaction of intrinsic kinetics and internal mass transfer in porous ion-exchange catalysts: Green synthesis of peroxycarboxylic acids. Chemical Engineering Science, 2009, 64(19): 4101–4114

DOI

103
Chu G W, Song Y J, Zhang W J, Luo Y, Zou H K, Xiang Y, Chen J F. Micromixing efficiency enhancement in a rotating packed bed reactor with surface-modified nickel foam packing. Industrial & Engineering Chemistry Research, 2015, 54(5): 1697–1702

DOI

Outlines

/