REVIEW ARTICLE

Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review

  • Wenjin Ding , 1 ,
  • Alexander Bonk 1 ,
  • Thomas Bauer 2
Expand
  • 1. Institute of Engineering Thermodynamics, German Aerospace Center (DLR), 70569 Stuttgart, Germany
  • 2. Institute of Engineering Thermodynamics, German Aerospace Center (DLR), 51147 Cologne, Germany

Received date: 22 Jan 2018

Accepted date: 01 Mar 2018

Published date: 18 Sep 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Recently, more and more attention is paid on applications of molten chlorides in concentrated solar power (CSP) plants as high-temperature thermal energy storage (TES) and heat transfer fluid (HTF) materials due to their high thermal stability limits and low prices, compared to the commercial TES/HTF materials in CSP-nitrate salt mixtures. A higher TES/HTF operating temperature leads to higher efficiency of thermal to electrical energy conversion of the power block in CSP, however causes additional challenges, particularly increased corrosiveness of metallic alloys used as containers and structural materials. Thus, it is essential to study corrosion behaviors and mechanisms of metallic alloys in molten chlorides at operating temperatures (500–800 °C) for realizing the commercial application of molten chlorides in CSP. The results of studies on hot corrosion of metallic alloys in molten chlorides are reviewed to understand their corrosion behaviors and mechanisms under various conditions (e.g., temperature, atmosphere). Emphasis has also been given on salt purification to reduce corrosive impurities in molten chlorides and development of electrochemical techniques to in-situ monitor corrosive impurities in molten chlorides, in order to efficiently control corrosion rates of metallic alloys in molten chlorides to meet the requirements of industrial applications.

Cite this article

Wenjin Ding , Alexander Bonk , Thomas Bauer . Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review[J]. Frontiers of Chemical Science and Engineering, 2018 , 12(3) : 564 -576 . DOI: 10.1007/s11705-018-1720-0

Acknowledgments

This research has been performed within the DLR-DAAD fellowship programme, which is funded by German Academic Exchange Service (DAAD) and German Aerospace Center (DLR).
1
Minh N Q. Extraction of metals by molten salt electrolysis: Chemical fundamentals and design factors. Journal of Metals, 1985, 37(1): 28–33

2
Fray D J. Emerging molten salt technologies for metals production. Journal of the Minerals Metals & Materials Society, 2001, 53(10): 26–31

DOI

3
Wulandari W, Brooks G A, Rhamdhani M A, Monaghan B J. Magnesium: Current and alternative production routes. In: Proceedings of Chemeca 2010: Engineering at the Edge. Barton: Engineers Australia, 2010, 347–357

4
Mehos M, Turchi C, Vidal J, Wagner M, Ma Z, Ho C, Kolb W, Andraka C, Kruizenga A. Concentrating Solar Power Gen3 Demonstration Roadmap. National Renewable Energy Laboratory Technical Report NREL/TP-5500-67464. 2017

5
Kuravi S, Trahan J, Goswami D Y, Rahman M M, Stefanakos E K. Thermal energy storage technologies and systems for concentrating solar power plants. Progress in Energy and Combustion Science, 2013, 39(4): 285–319

DOI

6
Zervos A, ed. Renewables 2016: Global Status Report, 2016. Paris: REN21 Secretariat, 2016, 67–69

7
Vignarooban K, Xu X, Arvay A, Kannan H K. Heat transfer fluids for concentrating solar power systems—a review. Applied Energy, 2015, 146: 383–396

DOI

8
Lantelme F, Groult H, eds. Molten Salts Chemistry: From Lab to Applications. Amsterdam: Elsevier, 2013, 415–438

9
Li Y, Xu X, Wang X, Li P, Hao Q, Xiao B. Survey and evaluation of equations for thermophysical properties of binary/ternary eutectic salts from NaCl, KCl, MgCl2, CaCl2, ZnCl2 for heat transfer and thermal storage fluids in CSP. Solar Energy, 2017, 152: 57–79

DOI

10
Tian Y, Zhao C Y. A review of solar collectors and thermal energy storage in solar thermal applications. Applied Energy, 2013, 104: 538–553

DOI

11
Kruizenga A M. Corrosion Mechanisms in Chloride and Carbonate Salts. SANDIA Report SAND2012-7594. 2012

12
Ozeryanaya I N. Corrosion of metals by molten salts in heat-treatment processes. Metal Science and Heat Treatment, 1985, 27(3): 184–188

DOI

13
Sequeira C A C. High temperature corrosion in molten salts. Molten Salt Forum, 2003, 7, 117–170

14
Lai G Y, ed. High-Temperature Corrosion and Materials Applications. Ohio: ASM International, 2007, 409–421

15
Patel N S, Pavik V, Boca M. High-temperature corrosion behavior of superalloys in molten salts—a review. Critical Reviews in Solid State and Material Sciences, 2017, 42(1): 83–97

DOI

16
Tomkins R P T, Bansal N P. Gases in molten salts, a volume in IUPAC solubility data series. Oxford: Pergamon Press, 1991, Volume 45/46, 61, 114–176, 220–245, 325–339, 353–357

17
Li Y S, Spiegel M. Models describing the degradation of FeAl and NiAl alloys induced by ZnCl2-KCl melt at 400–450 °C. Corrosion Science, 2004, 46(8): 2009–2023

DOI

18
Maksoud L, Bauer T. Experimental investigation of chloride molten salts for thermal energy storage applications. In: Proceedings of 10th International Conference on Molten Salt Chemistry and Technology, Shenyang, China, 2015, 273–280

19
Kipouros G J, Sadoway D R. A thermochemical analysis of the production of anhydrous MgCl2. Journal of Light Metals, 2001, 1(2): 111–117

DOI

20
Maricle D L, Hume D N. A new method for preparing hydroxide—free alkali chloride melts. Journal of the Electrochemical Society, 1960, 107(4): 354–356

DOI

21
Skar R A. Chemical and electrochemical characterisation of oxide/hydroxide impurities in the electrolyte for magnesium production. Dissertation for the Doctoral Degree. Trondheim: Norwegian University of Science and Technology (NTNU), 2001, 26

22
Gussone J. Schmelzflusselektroytische Abscheidung von Titan auf Vertärkungsfasern zur Herstellung von Titanmatrixverbundwerkstoffen. Dissertation for the Doctoral Degree. Aachen: RWTH Aachen University, 2012, 56–80 (in German)

23
Ding W, Bonk A, Gussone J, Bauer T. Electrochemical measurement of corrosive impurities in molten chlorides for thermal energy storage. Journal of Energy Storage, 2018, 15: 408–414

DOI

24
Ding W, Bonk A, Gussone J, Bauer T. Cyclic voltammetry for monitoring corrosive impurities in molten chlorides for thermal energy storage. Energy Procedia, 2017, 135: 82–91

DOI

25
Ding W, Bonk A, Gussone J, Bauer T. Electrochemical method for monitoring corrosive impurities in molten MgCl2/KCl/NaCl salts for thermal energy storage. In: Proceedings of 11th International Renewable Energy Storage Conference (IRES 2017), Düsseldorf Germany, 2017, Paper-Nr: IRES2017-141

26
Gaune-Escard M, ed. Molten Salts: From Fundamentals To Applications. NATO Science Series (Series II: Mathematics, Physics, and Chemistry), volume 52. Dordrecht: Springer, 2002, 283–285

27
Mohamedi M, Borresen B, Haarberg G M, Tunold R. Anodic behavior of carbon electrodes in CaO-CaCl2 melts at 1123 K. Journal of the Electrochemical Society, 1999, 146(4): 1472–1477

DOI

28
Brookes H C. Voltammetric investigations of CaCI2:KCI melts at 700 °C. Journal of the Electrochemical Society, 1988, 135(2): 373–377

DOI

29
Liu B, Wei X, Wang W, Lu J, Ding J. Corrosion behavior of Ni-based alloys in molten NaCl-CaCl2-MgCl2 eutectic salt for concentrating solar power. Solar Energy Materials and Solar Cells, 2017, 170: 77–86

DOI

30
Vignarooban K, Pugazhendhi P, Tucker C, Gervasio D, Kannan A M. Corrosion resistance of Hastelloys in molten metal-chloride heat-transfer fluids for concentrating solar power applications. Solar Energy, 2014, 103: 62–69

DOI

31
Vignarooban K, Xu X, Wang K, Molina E E, Li P, Gervasio D, Kannan A M. Vapor pressure and corrosivity of ternary metal-chloride molten-salt based heat transfer fluids for use in concentrating solar power systems. Applied Energy, 2015, 159: 206–213

DOI

32
Gomez-Vidal J C, Tirawat R. Corrosion of alloys in a chloride molten salt (NaCl-LiCl) for solar thermal technologies. Solar Energy Materials and Solar Cells, 2016, 157: 234–244

DOI

33
Wang J W, Zhang C Z, Li Z H, Zhou H X, He J X, Yu J C. Corrosion behavior of nickel-based superalloys in thermal storage medium of molten eutectic NaCl-MgCl2 in atmosphere. Solar Energy Materials and Solar Cells, 2017, 164: 146–155

DOI

34
Abramov A V, Polovov I B, Volkvich V A, Rebrin O I, Denisov E I, Griffiths T R. Corrosion of austenitic steels and their components in vanadium-containing chloride melts. ECS Transactions, 2012, 50(11): 685–698

DOI

35
Gaune-Escard M, Haarberg G M, eds. Molten Salts Chemistry and Technology. Chichester: John Wiley & Sons, Ltd., 2014, 427–448

36
Gomez-Vidal J C, Fernandez A G, Tirawat R, Turchi C, Huddleston W. Corrosion resistance of alumina-forming alloys against molten chlorides for energy production. II: Pre-oxidation treatment and isothermal corrosion tests. Solar Energy Materials and Solar Cells, 2017, 166: 222–233

DOI

37
Wang J W, Zhou H X, Zhang C Z, Liu W N, Zhao B Y. Influence of MgCl2 content on corrosion behavior of GH1140 in molten NaCl-MgCl2 as thermal storage medium. Solar Energy Materials and Solar Cells, 2018, 179: 194–201

DOI

38
Hamer W J, Malmberg M S, Rubin B. Theoretical electromotive forces for cells containing a single solid or molten chloride electrolyte. Journal of the Electrochemical Society, 1956, 103(1): 8–16

DOI

39
Plambeck J A. Electromotive force series in molten salts. Journal of Chemical & Engineering Data, 1967, 12(1): 77–82

DOI

40
Indacochea J E, Smith J L, Litko K R, Karell E J, Rarez A G. High-temperature oxidation and corrosion of structural materials in molten chlorides. Oxidation of Metals, 2001, 55(1-2): 1–16

DOI

41
Indacochea J E, Smith J L, Litko K R, Karell E J. Corrosion performance of ferrous and refractory metals in molten salts under reducing conditions. Journal of Materials Research, 1999, 14(5): 1990–1995

DOI

42
Garcia-Diaz B L, Olson L, Martinez-Rodriguez M, Fuentes R, Colon-Mercado H, Gray J. High temperature electrochemical engineering and clean energy systems. Journal of the South Carolina Academy of Science, 2016, 14(1): 11–14

43
Gomez-Vidal J C, Fernandez A G, Tirawat R, Turchi C, Huddleston W. Corrosion resistance of alumina-forming alloys against molten chlorides for energy production. I: Pre-oxidation treatment and isothermal corrosion tests. Solar Energy Materials and Solar Cells, 2017, 166: 222–233

DOI

44
Gomez-Vidal J C. Corrosion resistance of MCrAlX coatings in a molten chloride for thermal storage in concentrating solar power applications. Nature Partner Journal Materials Degradation, 2017, 7: 1–9

45
Azarbayjani K, Rizvi G, Foroutan F. Evaluating effects of immersion tests in molten copper chloride salts on corrosion resistant coatings. International Journal of Hydrogen Energy, 2016, 41(19): 8394–8400

DOI

Outlines

/