Frontiers of Chemical Science and Engineering >
Mild and highly regioselective synthesis of biaryl acids via Rh(I)-catalyzed cross-dehydrogenative coupling of benzoic acids using sodium chlorite as oxidant
Received date: 20 Jul 2017
Accepted date: 24 Oct 2017
Published date: 26 Feb 2018
Copyright
A mild and efficient synthesis for the biaryl acids via rhodium-catalyzed cross-dehydrogenative coupling reaction has been developed. This novel protocol with sodium chlorite as an oxidant featured many advantages such as mild reaction conditions, high regioselectivity, tolerance of various functional groups, and good to excellent yields.
Key words: biaryl acids; cross-dehydrogenative coupling; rhodium-catalyzed
Yun Liu , Youquan Zhu , Chaojun Li . Mild and highly regioselective synthesis of biaryl acids via Rh(I)-catalyzed cross-dehydrogenative coupling of benzoic acids using sodium chlorite as oxidant[J]. Frontiers of Chemical Science and Engineering, 2018 , 12(1) : 3 -8 . DOI: 10.1007/s11705-017-1693-4
1 |
Surry D S, Buchwald S L. Diamine ligands in copper-catalyzed reactions. Chemical Science (Cambridge), 2010, 1(1): 13–31
|
2 |
Magano J, Dunetz J R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. Chemical Reviews, 2011, 111(3): 2177–2250
|
3 |
Seechurn C C J, Kitching M O, Colacot T J, Snieckus V. Palladium-catalyzed cross-coupling: A historical contextual perspective to the 2010 Nobel Prize. Angewandte Chemie International Edition, 2012, 51(21): 506–5085
|
4 |
Girard S A, Knauber T, Li C J. The cross-dehydrogenative coupling of C(sp3)-H bonds: A versatile strategy for C‒C bond formations. Angewandte Chemie International Edition, 2014, 53(1): 74–100
|
5 |
Li C J. Cross-dehydrogenative coupling (CDC): Exploring C-C bond formations beyond functional group transformations. Accounts of Chemical Research, 2009, 42(2): 335–344
|
6 |
Li Z, Bohle D S, Li C J. Cu-catalyzed cross-dehydrogenative coupling: A versatile strategy for C‒C bond formations via the oxidative activation of sp3 C‒H bonds. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(24): 8928–8933
|
7 |
Sarhan A A O, Bolm C. Iron(III) chloride in oxidative C–C coupling reactions. Chemical Society Reviews, 2009, 38(9): 2730–2744
|
8 |
Sun C L, Li B J, Shi Z J. Direct C‒H transformation via iron catalysis. Chemical Reviews, 2011, 111(3): 1293–1314
|
9 |
Yeung C S, Dong V M. Catalytic dehydrogenative cross-coupling: Forming carbon-carbon bonds by oxidizing two carbon-hydrogen bonds. Chemical Reviews, 2011, 111(3): 1215–1292
|
10 |
Liu C, Zhang H, Shi W, Lei A W. Bond formations between two nucleophiles: Transition metal catalyzed oxidative cross-coupling Reactions. Chemical Reviews, 2011, 111(3): 1780–1824
|
11 |
Shang X, Liu Z Q. Transition metal-catalyzed C(vinyl)‒C(vinyl) bond formation via double C(vinyl)‒H bond activation. Chemical Society Reviews, 2013, 42(8): 3253–3260
|
12 |
Liu C, Yuan J W, Gao M, Tang S, Li W, Shi R Y, Lei A W. Oxidative coupling between two hydrocarbons: An update of recent C‒H functionalizations. Chemical Reviews, 2015, 115(22): 12138–12204
|
13 |
Ashenhurst J A. Intermolecular oxidative cross-coupling of arenes. Chemical Society Reviews, 2010, 39(2): 540–548
|
14 |
Stuart D R, Fagnou K. The catalytic cross-coupling of unactivated arenes. Science, 2007, 316(5828): 1172–1175
|
15 |
Hull K L, Sanford M S. Catalytic and highly regioselective cross-coupling of aromatic C‒H substrates. Journal of the American Chemical Society, 2007, 129(39): 11904–11905
|
16 |
Stuart D R, Villemure E, Fagnou K. Elements of regiocontrol in palladium-catalyzed oxidative arene cross-coupling. Journal of the American Chemical Society, 2007, 129(40): 12072–12073
|
17 |
Zhang H B, Liu L, Chen Y J, Wang D, Li C J. “On water”-promoted direct coupling of indoles with 1,4-benzoquinones without catalyst. European Journal of Organic Chemistry, 2006, 2006(4): 869–873
|
18 |
Campbell A N, Meyer E B, Stahl S S. Regiocontrolled aerobic oxidative coupling of indoles and benzene using Pd catalysts with 4,5-diazafluorene Ligands. Chemical Communications (Cambridge), 2011, 47(37): 10257–10259
|
19 |
Cambeiro X C, Ahlsten N, Larrosa I. Au-catalyzed cross-coupling of arenes via double C–H activation. Journal of the American Chemical Society, 2015, 137(50): 15636–15639
|
20 |
Xu H, Shang M, Dai H X, Yu J Q. Ligand-controlled para-selective C–H arylation of monosubstituted arenes. Organic Le tters, 2015, 17(15): 3830–3833
|
21 |
Wencel-Delord J, Nimphius C, Patureau F W, Glorius F. [RhIIICp*]-catalyzed dehydrogenative aryl-aryl bond formation. Angewandte Chemie International Edition, 2012, 51(9): 2247–2251
|
22 |
Kuhl N, Hopkinson M N, Glorius F. Selective rhodium(III)-catalyzed cross-dehydrogenative coupling of furan and thiophene derivatives. Angewandte Chemie International Edition, 2012, 51(33): 8230–8234
|
23 |
Morimoto K, Itoh M, Hirano K, Satoh T, Shibata Y, Tanaka K, Miura M. Synthesis of fluorene derivatives through rhodium-catalyzed dehydrogenative cyclization. Angewandte Chemie International Edition, 2012, 51(22): 5359–5362
|
24 |
Dong J, Long Z, Song F, We N, Guo Q, Lan J, You J. Rhodium or ruthenium-catalyzed oxidative C‒H/C‒H cross-coupling: Direct access to extended p-conjugated systems. Angewandte Chemie International Edition, 2013, 52(2): 580–584
|
25 |
Zhang T, Lin W. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chemical Society Reviews, 2014, 43(16): 5982–5993
|
26 |
Li D S, Wu Y P, Zhao J, Zhang J, Lu J Y. Metal-organic frameworks based upon non-zeotype 4-connected topology. Coordination Chemistry Reviews, 2014, 261: 1–27
|
27 |
Zhang H X, Wang F, Yang H, Tan Y X, Zhang J, Bu X. Interrupted zeolite LTA and ATN-type boron imidazolate frameworks. Journal of the American Chemical Society, 2011, 133(31): 11884–11887
|
28 |
Zhang Y H, Li X, Song S. White light emission based on a single component Sm(III) framework and a two component Eu(III)-doped Gd(III) framework constructed from 2,2′-diphenyl dicarboxylate and 1H-imidazo[4,5-f][1,10]-phenanthroline. Chemical Communications, 2013, 49(88): 10397–10399
|
29 |
Guo S Q, Tian D, Luo Y H, Zhang H. Solvothermal synthesis, structure, and luminescence of a 3-D Cd(II) complex assembled with biphenyl-2,5,2′,5′-tetracarboxylic acid involving in situ ligand reaction. Journal of Coordination Chemistry, 2012, 65(2): 308–315
|
30 |
Jurd L. Plant polyphenols. III. The isolation of a new ellagitannin from the pellicle of the walnut. Journal of the American Chemical Society, 1958, 80(9): 2249–2252
|
31 |
Chen D F, Zhang S X, Xie L, Xie J X, Chen K, Kashiwada Y, Zhou B N, Wang P, Cosentino L M, Lee K H. Anti-aids agents—XXVI. Structure-activity correlations of Gomisin-G-related anti-HIV lignans from Kadsura interior and of related synthetic analogues. Bioorganic & Medicinal Chemistry, 1997, 5(8): 1715–1723
|
32 |
Nelson T D, Meyers A I. A rapid total synthesis of an ellagitannin. Journal of Organic Chemistry, 1994, 59(9): 2577–2580
|
33 |
Parida K N, Moorthy J N. Synthesis of o-carboxyarylacrylic acids by room temperature oxidative cleavage of hydroxynaphthalenes and higher aromatics with oxone. Journal of Organic Chemistry, 2015, 80(16): 8354–8360
|
34 |
Zhang D L, Zhou L Y, Quan J M, Zhang W, Gu L Q, Huang Z S, An L K. Oxygen insertion of o-quinone under catalytic hydrogenation conditions. Organic Letters, 2013, 15(6): 1162–1165
|
35 |
Kang S, Lee S, Jeon M S, Kim M, Kim Y S, Han H, Yang J W. In situ generation of hydroperoxide by oxidation of benzhydrols to benzophenones using sodium hydride under oxygen atmosphere: Use for the oxidative cleavage of cyclic 1,2-diketones to dicarboxylic acids. Tetrahedron Letters, 2013, 54(5): 373–376
|
36 |
Barati B, Moghadam M, Rahmati A, Tangestaninejad S, Mirkhani V, Mohammadpoor-Baltork I. Ruthenium hydride catalyzed direct oxidation of alcohols to carboxylic acids via transfer hydrogenation: Styrene oxide as oxygen source. Synlett, 2013, 24(1): 90–96
|
37 |
Lin G Q, Hong R. A new reagent system for modified Ullmann-type coupling reactions: NiCl2(PPh3)2/PPh3/Zn/ NaH/toluene. Journal of Organic Chemistry, 2001, 66(8): 2877–2880
|
38 |
Ram R N, Singh V. Palladium(II) chloride/EDTA-catalyzed biaryl homo-coupling of aryl halides in aqueous medium in the presence of ascorbic acid. Tetrahedron Letters, 2006, 47(43): 7625–7628
|
39 |
Montoya-Pelaez P J, Uh Y S, Lata C, Thompson M P, Lemieux R P, Crudden C M. The synthesis and resolution of 2,2′-, 4,4′-, and 6,6′-substituted chiral biphenyl derivatives for application in the preparation of chiral materials. Journal of Organic Chemistry, 2006, 71(16): 5921–5929
|
40 |
Surry D S, Fox D J, Macdonald S J F, Spring D R. Aryl-aryl coupling via directed lithiation and oxidation. Chemical Communications (Cambridge), 2005, (20): 2589–2590
|
41 |
Gong H, Zeng H Y, Zhou F, Li C J. Rhodium(I)-catalyzed regiospecific dimerization of aromatic acids: Two direct C‒H bond activations in water. Angewandte Chemie International Edition, 2015, 54(19): 5718–5721
|
42 |
Song G Y, Wang W F, Li X W. C–C, C–O and C–N bond formation via rhodium-catalyzed oxidative C–H activation. Chemical Society Reviews, 2012, 41(9): 3651–3678
|
43 |
Colby D A, Bergman R G, Ellman J A. Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation. Chemical Reviews, 2010, 110(2): 624–655
|
44 |
Stuart D R, Bertrand-Laperle M, Burgess K M N, Fagnou K. Indole synthesis via rhodium catalyzed oxidative coupling of acetanilides and internal alkynes. Journal of the American Chemical Society, 2008, 130(49): 16474–16475
|
45 |
Guimond N, Gouliaras C, Fagnou K. Rhodium(III)-catalyzed isoquinolone synthesis: The N-O bond as a handle for C-N bond formation and catalyst turnover. Journal of the American Chemical Society, 2010, 132(20): 6908–6909
|
46 |
Hyster T K, Rovis T. Rhodium-catalyzed oxidative cycloaddition of benzamides and alkynes via C‒H/N‒H activation. Journal of the American Chemical Society, 2010, 132(30): 10565–10569
|
47 |
Patureau F W, Besset T, Kuhl N, Glorius F. Diverse strategies toward indenol and fulvene derivatives: Rh-catalyzed C‒H activation of aryl ketones followed by coupling with internal alkynes. Journal of the American Chemical Society, 2011, 133(7): 2154–2156
|
48 |
Tan X, Liu B X, Li X Y, Li B, Xu S S, Song H B, Wang B Q. Rhodium-catalyzed cascade oxidative annulation leading to substituted naphtho[1,8-bc]pyrans by sequential cleavage of C(sp2)‒H/C(sp3)‒H and C(sp2)‒H/O‒H bonds. Journal of the American Chemical Society, 2012, 134(39): 16163–16166
|
/
〈 | 〉 |