RESEARCH ARTICLE

Metal cation removal by P(VC-r-AA) copolymer ultrafiltration membranes

  • Nachuan Wang 1 ,
  • Jun Wang 1 ,
  • Peng Zhang 2 ,
  • Wenbin Wang 1 ,
  • Chuangchao Sun 1 ,
  • Ling Xiao 2 ,
  • Chen Chen 2 ,
  • Bin Zhao 2 ,
  • Qingran Kong 1 ,
  • Baoku Zhu , 1
Expand
  • 1. Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 2. Hainan Litree Purifying Technology Co., Ltd., Haikou 571126, China

Received date: 17 May 2017

Accepted date: 09 Aug 2017

Published date: 09 May 2018

Copyright

2017 Higher Education Press and Springer-Verlag GmbH Germany

Abstract

A series of amphiphilic copolymers containing poly(vinyl chloride-r-acrylic acid) (P(VC-r-AA) ) was synthesized and used to prepare membranes via a non-solvent induced phase separation method. The prepared membranes were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and water contact angle and zeta potential measurements. The copolymer P(VC-r-AA) chains did not dissolved in a coagulation bath, indicating that the AA segments were completely retained within the membrane. Enriching degree of AA segments in surface layer was 2 for copolymer membrane. In addition, the introduction of AA segments made the membrane electronegative and hydrophilic so that the membrane was sensitive to the solution pH. The fouling resistance, adsorption of Cu(II), Cr(III) and Ce(IV) ions and the desorption properties of the membranes were also determined. The copolymer membranes exhibited good antifouling performance with a fouling reversibility of 92%. The membranes also had good adsorption capacities for Cu(II), Cr(III) and Ce(IV) ions. The optimal pH for Cu(II) adsorption was 6 and the copolymer membrane has potential applications for low concentration Cu(II) removal.

Cite this article

Nachuan Wang , Jun Wang , Peng Zhang , Wenbin Wang , Chuangchao Sun , Ling Xiao , Chen Chen , Bin Zhao , Qingran Kong , Baoku Zhu . Metal cation removal by P(VC-r-AA) copolymer ultrafiltration membranes[J]. Frontiers of Chemical Science and Engineering, 2018 , 12(2) : 262 -272 . DOI: 10.1007/s11705-017-1682-7

Acknowledgements

This research was supported by the National High Technology Research and Development Program of China (Granted No. 2012AA03A602), the National Basic Research Program of China (Granted No. 2009CB623402) and the National Natural Science Foundation of China (Grant No. 20974094).
1
Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J, Mayes A M. Science and technology for water purification in the coming decades. Nature, 2008, 452(7185): 301–310

DOI

2
Yang Q, Adrus N, Tomicki F, Ulbricht M. Composites of functional polymeric hydrogels and porous membranes. Journal of Materials Chemistry, 2011, 21(21): 2783–2811

DOI

3
Zhang G L, Lin L, Meng Q, Xu Y Y. Distillation of methanol–water solution in hollow fibers. Separation and Purification Technology, 2007, 56(2): 143–149

DOI

4
Arnal J M, Garcia-Fayos B, Verdu G, Lora J. Ultrafiltration as an alternative membrane technology to obtain safe drinking water from surface water: 10 years of experience on the scope of the AQUAPOT Project. Desalination, 2009, 248(1): 34–41

DOI

5
Goncalves B. Asymmetric polysulfone and polyethersulfone membranes: Effects of thermodynamic conditions during formation on their performance. Journal of Membrane Science, 2000, 169(2): 287–299

DOI

6
Idris A, Zain N M, Noordin M Y. Synthesis, characterization and performance of asymmetric polyethersulfone (PES) ultrafiltration membranes with polyethylene glycol of different molecular weights as additives. Desalination, 2007, 207(1-3): 324–339

DOI

7
Chakrabarty B, Ghoshal A K, Purkait M K. Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive. Journal of Membrane Science, 2008, 315(1): 36–47

DOI

8
Zhang J, Xu Z, Mai W, Min C, Zhou B, Shan M, Li Y, Yang C, Wang Z, Qian X. Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(9): 3101–3111

DOI

9
Kang G, Cao Y. Application and modification of poly(vinylidene fluoride) (PVDF) membranes—a review. Journal of Membrane Science, 2014, 463(1): 145–165

DOI

10
Kim I C, Yun H G, Lee K H. Preparation of asymmetric polyacrylonitrile membrane with small pore size by phase inversion and post-treatment process. Journal of Membrane Science, 2002, 199(1-2): 75–84

DOI

11
Wan L S, Xu Z K, Wang Z G. Leaching of PVP from polyacrylonitrile/PVP blending membranes: A comparative study of asymmetric and dense membranes. Journal of Polymer Science. Part B, Polymer Physics, 2006, 44(10): 1490–1498

DOI

12
Yang S, Liu Z. Preparation and characterization of polyacrylonitrile ultrafiltration membranes. Journal of Membrane Science, 2005, 246(1): 7–12

DOI

13
Ghazanfari D, Bastani D, Mousavi S A. Preparation and characterization of poly(vinyl chloride) (PVC) based membrane for wastewater treatment. Journal of Water Process Engineering, 2017, 16: 98–107

DOI

14
Liu W D, Zhang Y H, Fang L F, Zhu B K, Zhu L P. Antifouling property of poly(vinyl chloride) membranes modified by amphiphilic copolymers P(MMA-b-MAA). Chinese Journal of Polymer Science, 2012, 30(4): 568–577

DOI

15
Fang L F, Zhu B K, Zhu L P, Matsuyama H, Zhao S F. Structures and antifouling properties of polyvinyl chloride/poly(methyl methacrylate)-graft-poly (ethylene glycol) blend membranes formed in different coagulation media. Journal of Membrane Science, 2017, 524: 235–244

DOI

16
Farahani M H, Rabiee H, Vatanpour V, Borghei S M. Fouling reduction of emulsion polyvinylchloride ultrafiltration membranes blended by PEG: The effect of additive concentration and coagulation bath temperature. Desalination and Water Treatment, 2015, 57(26): 11931–11944

DOI

17
Liu L, Zhao C, Yang F. TiO2 and polyvinyl alcohol (PVA) coated polyester filter in bioreactor for wastewater treatment. Water Research, 2012, 46(6): 1969–1978

DOI

18
Liu B, Chen C, Zhang W, Crittenden J, Chen Y. Low-cost antifouling PVC ultrafiltration membrane fabrication with Pluronic F 127: Effect of additiveson properties and performance. Desalination, 2012, 307(49): 26–33

DOI

19
Huang L, Song Z, Zhi W, Wu J, Wang J, Wang S. In situ immobilization of silver nanoparticles for improving permeability, antifouling and anti-bacterial properties of ultrafiltration membrane. Journal of Membrane Science, 2015, 499: 269–281

DOI

20
Boributh S, Chanachai A, Jiraratananon R. Modification of PVDF membrane by chitosan solution for reducing protein fouling. Journal of Membrane Science, 2009, 342(1): 97–104

DOI

21
Yue W W, Li H J, Xiang T, Qin H, Sun S D, Zhao C S. Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility. Journal of Membrane Science, 2013, 446(11): 79–91

DOI

22
Li Y, Zhang H, Zhang H, Cao J, Xu W, Li X. Hydrophilic porous poly(sulfone) membranes modified by UV-initiated polymerization for vanadium flow battery application. Journal of Membrane Science, 2014, 454(454): 478–487

DOI

23
Eren E, Sarihan A, Eren B, Gumus H, Kocak F O. Preparation, characterization and performance enhancement of polysulfone ultrafiltration membrane using PBI as hydrophilic modifier. Journal of Membrane Science, 2015, 475(475): 1–8

DOI

24
Su Y, Sun M, Wang L, Jiang Z. Ion-pair formation and ion-specific flux of a weak polyelectrolyte membrane. Journal of Physical Chemistry B, 2009, 113(28): 9454–9460

DOI

25
Belfer S, Fainshtain R, Purinson Y, Gilron J, Nystrom M, Manttari M. Modification of NF membrane properties by in situ redox initiated graftpolymerization with hydrophilic monomers. Journal of Membrane Science, 2004, 239(1): 55–64

DOI

26
Steen M L, Hymas L, Havey E D, Capps N E, Castner D G, Fisher E R. Low temperature plasma treatment of asymmetric polysulfone membranes forpermanent hydrophilic surface modification. Journal of Membrane Science, 2001, 188(1): 97–114

DOI

27
Yu H, Cao Y, Kang G, Liu J, Li M, Yuan Q. Enhancing antifouling property of polysulfone ultrafiltration membrane by grafting zwitter ionic copolymer via UV-initiated polymerization. Journal of Membrane Science, 2009, 342(1-2): 6–13

DOI

28
Loh C H, Wang R. Insight into the role of amphiphilic pluronic block copolymer as pore-forming additive in PVDF membrane formation. Journal of Membrane Science, 2013, 446(11): 492–503

DOI

29
Zhou Z, Rajabzadeh S, Shaikh A R, Kakihana Y, Ma W, Matsuyama H. Effect of surface properties on antifouling performance of poly(vinyl chloride-co-poly(ethylene glycol)methyl ether methacrylate)/PVC blend membrane. Journal of Membrane Science, 2016, 514: 537–546

DOI

30
Ma W, Rajabzadeh S, Shaikh A R, Kakihana Y, Sun Y, Matsuyama H. Effect of type of poly(ethylene glycol) (PEG) based amphiphilic copolymer on antifouling properties of copolymer/poly(vinylidene fluoride) (PVDF) blend membranes. Journal of Membrane Science, 2016, 514: 429–439

DOI

31
Rabiee H, Shahabadi S, Mokhtare A, Rabiei H, Alvandifar N. Enhancement in permeation and antifouling properties of PVC ultrafiltration membranes with addition of hydrophilic surfactant additives: Tween-20 and Tween-80. Journal of Environmental Chemical Engineering, 2016, 4(4): 4050–4061

DOI

32
Rabiee H, Farahani M H D A, Vatanpour V. Preparation and characterization of emulsion poly(vinyl chloride) (EPVC)/TiO2 nanocomposite ultrafiltration membrane. Journal of Membrane Science, 2014, 472(4): 185–193

DOI

33
Rabiee H, Vatanpour V, Farahani M H D A, Zarrabi H. Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles. Separation and Purification Technology, 2015, 156: 299–310

DOI

34
Liu Z X, Mi Z M, Chen C H, Zhou H W, Zhao X G, Wang D M. Preparation of hydrophilic and antifouling polysulfone ultrafiltration membrane derived from phenolphthalin by copolymerization method. Applied Surface Science, 2016, 401: 69–78

DOI

35
Ravey M, Waterman J, Shorr L, Kramer M. Vinyl chloride-propylene copolymerization. Journal of Polymer Science Polymer Chemistry Edition, 1976, 14(7): 1609–1616

DOI

36
Schaefer J. Random monomer distributions in copolymers. Copolymerizations of ethylene-vinyl chloride and ethylene-vinyl acetate. Journal of Physical Chemistry, 1966, 70(6): 1975–1985

DOI

37
Du M, Weng Z X, Shan G R, Huang Z M, Pan Z R. Study on suspension copolymerization rate of vinyl chloride/N-phenylmaleimide. Journal of Applied Polymer Science, 1999, 73(13): 2649–2656

DOI

38
Wang J S, Matyjaszewski K. Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. Macromolecules, 1995, 117(20): 127–134

39
Fang L F, Wang N C, Zhou M Y, Zhu B K, Zhu L P, John A E. Poly(N,N-dimethylaminoethyl methacrylate) grafted poly(vinyl chloride)s synthesized via ATRP process and their membranes for dye separation. Chinese Journal of Polymer Science, 2015, 33(11): 1491–1502

DOI

40
Singh S, Khulbe K, Matsuura T, Ramamurthy P. Membrane characterization by solute transport and atomic force microscopy. Journal of Membrane Science, 1998, 142(1): 111–127

DOI

41
Mochizuki S, Zydney A L. Theoretical analysis of pore size distribution effects on membrane transport. Journal of Membrane Science, 1993, 82(3): 211–227

DOI

42
Domenech-Carbo M T, Aura-Castro E. Evaluation of the phase inversion process as an application method for synthetic polymers in conservation work. Studies in Conservation, 1999, 44(1): 19–28

43
Hester J F, Banerjee P, Mayes A M. Preparation of protein-resistant surfaces on poly(vinylidene fluoride) membranes via surface segregation. Macromolecules, 2010, 32(5): 1643–1650

DOI

44
Asatekin A, Kang S, Elimelech M, Mayes A M. Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives. Journal of Membrane Science, 2007, 298(1-2): 136–146

DOI

45
Taniguchi M, Pieracci J P, Belfort G. Effect of undulations on surface energy: A quantitative assessment. Langmuir, 2001, 17(14): 4312–4315

DOI

46
Burns D B, Zydney A L. Buffer effects on the zeta potential of ultrafiltration membranes. Journal of Membrane Science, 2000, 172(1): 39–48

DOI

47
Gao J, Sun S P, Zhu W P, Chung T S. Chelating polymer modified P84 nanofiltration (NF) hollow fiber membranes for high efficient heavy metal removal. Water Research, 2014, 63(7): 252–261

DOI

48
Konradi R, Rühe J. Interaction of poly(methacrylic acid) brushes with metal ions: An infrared investigation. Macromolecules, 2004, 37(18): 4345–4354

DOI

49
Fields S. Taking the lead and copper rule to task. Environmental Health Perspectives, 2006, 114(114): A276

DOI

50
Hsieh S H, Horng J J, Tsai C K. Growth of carbon nanotube on micro-sized Al2O3 particle and its application to adsorption of metal ions. Journal of Materials Research, 2006, 21(5): 1269–1273

DOI

51
Cui L M, Wang Y G, Gao L, Hu L H, Yan L G, Wei Q, Du B. EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property. Chemical Engineering Journal, 2015, 281: 1–10

DOI

52
Wang C C, Gea H, Zhao Y Y, Liu S S, Zou Y, Zhang W B. Study on the adsorption of Cu(II) by folic acid functionalized magnetic graphene oxide. Journal of Magnetism and Magnetic Materials, 2017, 423(1): 421–435

DOI

53
Yan H, Yang L, Yang Z, Yang H, Li A, Cheng R. Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of Copper(II) ions from aqueous solutions. Journal of Hazardous Materials, 2012, 229-230: 371–380

DOI

54
Monier M, Ayad D M, Wei Y, Sarhan A A. Preparation and characterization of magnetic chelating resin based on chitosan for adsorption of Cu(II) ions, Co(II) ions, and Ni(II) ions. Reactive & Functional Polymers, 2010, 70(4): 257–266

DOI

55
Guptaa V K, Agarwal S, Bharti A K, Sadegh H. Adsorption mechanism of functionalized multi-walled carbon nanotubes for advanced Cu(II) removal. Journal of Molecular Liquids, 2017, 230(3): 667–673

DOI

Outlines

/