RESEARCH ARTICLE

Microfluidic dual loops reactor for conducting a multistep reaction

  • Si Hyung Jin 1 ,
  • Jae-Hoon Jung 2,3 ,
  • Seong-Geun Jeong 1 ,
  • Jongmin Kim 1 ,
  • Tae Jung Park 3 ,
  • Chang-Soo Lee , 1
Expand
  • 1. Department of Chemical Engineering, Chungnam National University, Daejeon 34134, Korea
  • 2. Lotte Chemical R&D Center, Daejeon 34110, Korea
  • 3. Department of Chemistry, Chung-Ang University, Seoul 06974, Korea

Received date: 17 May 2017

Accepted date: 05 Aug 2017

Published date: 09 May 2018

Copyright

2017 Higher Education Press and Springer-Verlag GmbH Germany

Abstract

Precise control of each individual reaction that constitutes a multistep reaction must be performed to obtain the desired reaction product efficiently. In this work, we present a microfluidic dual loops reactor that enables multistep reaction by integrating two identical loop reactors. Specifically, reactants A and B are synthesized in the first loop reactor and transferred to the second loop reactor to synthesize with reactant C to form the final product. These individual reactions have nano-liter volumes and are carried out in a stepwise manner in each reactor without any cross-contamination issue. To precisely control the mixing efficiency in each loop reactor, we investigate the operating pressure and the operating frequency on the mixing valves for rotary mixing. This microfluidic dual loops reactor is integrated with several valves to realize the fully automated unit operation of a multistep reaction, such as metering the reactants, rotary mixing, transportation, and collecting the product. For proof of concept, CdSeZn nanoparticles are successfully synthesized in a microfluidic dual loops reactor through a fully automated multistep reaction. Taking all of these features together, this microfluidic dual loops reactor is a general microfluidic screening platform that can synthesize various materials through a multistep reaction.

Cite this article

Si Hyung Jin , Jae-Hoon Jung , Seong-Geun Jeong , Jongmin Kim , Tae Jung Park , Chang-Soo Lee . Microfluidic dual loops reactor for conducting a multistep reaction[J]. Frontiers of Chemical Science and Engineering, 2018 , 12(2) : 239 -246 . DOI: 10.1007/s11705-017-1680-9

Acknowledgements

This research was supported by Global Research Laboratory(GRL) Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT(2015K1A1A2033054).
Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11705-017-1680-9 and is accessible for authorized users.
1
Webb D, Jamison T F. Continuous flow multi-step organic synthesis. Chemical Science (Cambridge), 2010, 1(6): 675–680

DOI

2
Shukla C A, Kulkarni A A. Automating multistep flow synthesis: Approach and challenges in integrating chemistry, machines and logic. Beilstein Journal of Organic Chemistry, 2017, 13: 960–987

DOI

3
Porta R, Benaglia M, Puglisi A. Flow chemistry: Recent developments in the synthesis of pharmaceutical products. Organic Process Research & Development, 2016, 20(1): 2–25

DOI

4
Bannock J H, Krishnadasan S H, Nightingale A M, Yau C P, Khaw K, Burkitt D, Halls J J M, Heeney M, de Mello J C. Continuous synthesis of device-grade semiconducting polymers in droplet-based microreactors. Advanced Functional Materials, 2013, 23(17): 2123–2129

DOI

5
Duraiswamy S, Khan S A. Droplet-dased microfluidic synthesis of anisotropic metal nanocrystals. Small, 2009, 5(24): 2828–2834

DOI

6
Duraiswamy S, Khan S A. Plasmonic nanoshell synthesis in microfluidic composite foams. Nano Letters, 2010, 10(9): 3757–3763

DOI

7
Nightingale A M, Bannock J H, Krishnadasan S H, O’Mahony F T F, Haque S A, Sloan J, Drury C, McIntyre R, deMello J C. Large-scale synthesis of nanocrystals in a multichannel droplet reactor. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(12): 4067–4076

DOI

8
McQuade D T, Seeberger P H. Applying flow chemistry: Methods, materials, and multistep synthesis. Journal of Organic Chemistry, 2013, 78(13): 6384–6389

DOI

9
Asadi-Saghandi H, Karimi-Sabet J. Performance evaluation of a novel reactor configuration for oxidative dehydrogenation of ethane to ethylene. Korean Journal of Chemical Engineering, 2017, 34(7): 1905–1913

DOI

10
Pennemann H, Watts P, Haswell S J, Hessel V, Lowe H. Benchmarking of microreactor applications. Organic Process Research & Development, 2004, 8(3): 422–439

DOI

11
Jahnisch K, Hessel V, Lowe H, Baerns M. Chemistry in microstructured reactors. Angewandte Chemie International Edition, 2004, 43(4): 406–446

DOI

12
Sahoo H R, Kralj J G, Jensen K F. Multistep continuous-flow microchemical synthesis involving multiple reactions and separations. Angewandte Chemie International Edition, 2007, 46(30): 5704–5708

DOI

13
Singh R, Lee H J, Singh A K, Kim D P. Recent advances for serial processes of hazardous chemicals in fully integrated microfluidic systems. Korean Journal of Chemical Engineering, 2016, 33(8): 2253–2267

DOI

14
Su M. Synthesis of highly monodisperse silica nanoparticles in the microreactor system. Korean Journal of Chemical Engineering, 2017, 34(2): 484–494

DOI

15
Lee C C, Sui G D, Elizarov A, Shu C Y J, Shin Y S, Dooley A N, Huang J, Daridon A, Wyatt P, Stout D, et al. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science, 2005, 310(5755): 1793–1796

DOI

16
Chen S P, Javed M R, Kim H K, Lei J, Lazari M, Shah G J, van Dam R M, Keng P Y, Kim C J. Radiolabelling diverse positron emission tomography (PET) tracers using a single digital microfluidic reactor chip. Lab on a Chip, 2014, 14(5): 902–910

DOI

17
Kobayashi J, Mori Y, Okamoto K, Akiyama R, Ueno M, Kitamori T, Kobayashi S. A microfluidic device for conducting gas-liquid-solid hydrogenation reactions. Science, 2004, 304(5675): 1305–1308

DOI

18
Phillips T W, Lignos I G, Maceiczyk R M, deMello A J, deMello J C. Nanocrystal synthesis in microfluidic reactors: Where next? Lab on a Chip, 2014, 14(17): 3172–3180

DOI

19
Chan E M, Mathies R A, Alivisatos A P. Size-controlled growth of CdSe nanocrystals in microfluidic reactors. Nano Letters, 2003, 3(2): 199–201

DOI

20
Wang J, Bunimovich Y L, Sui G D, Savvas S, Wang J Y, Guo Y Y, Heath J R, Tseng H R. Electrochemical fabrication of conducting polymer nanowires in an integrated microfluidic system. Chemical Communications, 2006, •••(29): 3075–3077

DOI

21
Hou S, Wang S, Yu Z T F, Zhu N Q M, Liu K, Sun J, Lin W Y, Shen C K F, Fang X, Tseng H R. A hydrodynamically focused stream as a dynamic template for site-specific electrochemical micropatterning of conducting polymers. Angewandte Chemie International Edition, 2008, 47(6): 1072–1075

DOI

22
Li W, Pharn H H, Nie Z, MacDonald B, Guenther A, Kumacheva E. Multi-step microfluidic polymerization reactions conducted in droplets: The internal trigger approach. Journal of the American Chemical Society, 2008, 130(30): 9935–9941

DOI

23
Hartman R L, Naber J R, Buchwald S L, Jensen K F. Multistep microchemical synthesis enabled by microfluidic distillation. Angewandte Chemie International Edition, 2010, 49(5): 899–903

DOI

24
Noel T, Kuhn S, Musacchio A J, Jensen K F, Buchwald S L. Suzuki-Miyaura cross-coupling reactions in flow: Multistep synthesis enabled by a microfluidic extraction. Angewandte Chemie International Edition, 2011, 50(26): 5943–5946

DOI

25
Lee C C, Snyder T M, Quake S R. A microfluidic oligonucleotide synthesizer. Nucleic Acids Research, 2010, 38(8): 2514–2521

DOI

26
Zhou X C, Cai S Y, Hong A L, You Q M, Yu P L, Sheng N J, Srivannavit O, Muranjan S, Rouillard J M, Xia Y M, et al. Microfluidic Picoarray synthesis of oligodeoxynucleotides and simultaneous assembling of multiple DNA sequences. Nucleic Acids Research, 2004, 32(18): 5409–5417

DOI

27
Kim E B, Seo J M, Kim G W, Lee S Y, Park T J. In vivo synthesis of europium selenide nanoparticles and related cytotoxicity evaluation of human cells. Enzyme and Microbial Technology, 2016, 95: 201–208

DOI

28
Jeong H H, Jin S H, Lee B J, Kim T, Lee C S. Microfluidic static droplet array for analyzing microbial communication on a population gradient. Lab on a Chip, 2015, 15(3): 889–899

DOI

29
Jin S H, Jeong H H, Lee B, Lee S S, Lee C S. A programmable microfluidic static droplet array for droplet generation, transportation, fusion, storage, and retrieval. Lab on a Chip, 2015, 15(18): 3677–3686

DOI

30
Jeong H H, Lee B, Jin S H, Jeong S G, Lee C S. A highly addressable static droplet array enabling digital control of a single droplet at pico-volume resolution. Lab on a Chip, 2016, 16(9): 1698–1707

DOI

31
Jang S, Lee B, Jeong H H, Jin S H, Jang S, Kim S G, Jung G Y, Lee C S. On-chip analysis, indexing and screening for chemical producing bacteria in a microfluidic static droplet array. Lab on a Chip, 2016, 16(10): 1909–1916

DOI

32
Chou H P, Unger M A, Quake S R. A microfabricated rotary pump. Biomedical Microdevices, 2001, 3(4): 323–330

DOI

33
Hong J W, Studer V, Hang G, Anderson W F, Quake S R. A nanoliter-scale nucleic acid processor with parallel architecture. Nature Biotechnology, 2004, 22(4): 435–439

DOI

34
Yun J Y, Jambovane S, Kim S K, Cho S H, Duin E C, Hong J W. Log-scale dose response of inhibitors on a chip. Analytical Chemistry, 2011, 83(16): 6148–6153

DOI

35
Wang Y J, Lin W Y, Liu K, Lin R J, Selke M, Kolb H C, Zhang N G, Zhao X Z, Phelps M E, Shen C K F, Faull K F, Tseng H R. An integrated microfluidic device for large-scale in situ click chemistry screening. Lab on a Chip, 2009, 9(16): 2281–2285

DOI

36
Unger M A, Chou H P, Thorsen T, Scherer A, Quake S R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science, 2000, 288(5463): 113–116

DOI

37
Lin W Y, Wang Y, Wang S, Tseng H R. Integrated microfluidic reactors. Nano Today, 2009, 4(6): 470–481

DOI

38
Tseng H Y, Wang C H, Lin W Y, Lee G B. Membrane-activated microfluidic rotary devices for pumping and mixing. Biomedical Microdevices, 2007, 9(4): 545–554

DOI

39
Chang C C, Yang R J. Computational analysis of electrokinetically driven flow mixing in microchannels with patterned blocks. Journal of Micromechanics and Microengineering, 2004, 14(4): 550–558

DOI

40
Wang C H, Lee G B. Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection. Biosensors & Bioelectronics, 2005, 21(3): 419–425

DOI

41
Wang C H, Lee G B. Pneumatically driven peristaltic micropumps utilizing serpentine-shape channels. Journal of Micromechanics and Microengineering, 2006, 16(2): 341–348

DOI

42
Kelly K L, Coronado E, Zhao L L, Schatz G C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B, 2003, 107(3): 668–677

DOI

43
Zaniewski A M, Schriver M, Lee J G, Crommie M F, Zettl A. Electronic and optical properties of metal-nanoparticle filled graphene sandwiches. Applied Physics Letters, 2013, 102(2): 023108

DOI

44
Seo W S, Jo H H, Lee K, Kim B, Oh S J, Park J T. Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles. Angewandte Chemie International Edition, 2004, 43(9): 1115–1117

DOI

45
Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos A P. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(5385): 2013–2016

DOI

46
Coe S, Woo W K, Bawendi M, Bulovic V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature, 2002, 420(6917): 800–803

DOI

47
McDonald S A, Konstantatos G, Zhang S G, Cyr P W, Klem E J D, Levina L, Sargent E H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Materials, 2005, 4(2): 138–142

DOI

48
Sun Y G, Xia Y N. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298(5601): 2176–2179

DOI

49
Song L M, Zhang S J. Hydrothermal synthesis and highly visible light-induced photocatalytic activity of zinc-doped cadmium selenide photocatalysts. Chemical Engineering Journal, 2011, 166(2): 779–782

DOI

50
Park T J, Lee S Y, Heo N S, Seo T S. In vivo synthesis of diverse metal nanoparticles by recombinant Escherichia coli. Angewandte Chemie International Edition, 2010, 49(39): 7019–7024

DOI

Outlines

/