RESEARCH ARTICLE

Sorption enhanced catalytic CF4 hydrolysis with a three-stage catalyst-adsorbent reactor

  • Jae-Yun Han 1,4 ,
  • Chang-Hyun Kim 1 ,
  • Boreum Lee 2 ,
  • Sung-Chan Nam 1 ,
  • Ho-Young Jung 3 ,
  • Hankwon Lim , 2 ,
  • Kwan-Young Lee , 4 ,
  • Shin-Kun Ryi , 1
Expand
  • 1. Advanced Materials and Devices Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, Korea
  • 2. Department of Advanced Materials and Chemical Engineering, Catholic University of Daegu, Gyeongbuk 38430, Korea
  • 3. Department of Environment and Energy Engineering, Chonnam National University, Gwangju 61186, Korea
  • 4. Department of Chemical and Biological Engineering, Korea University, Seoul 136-701, Korea

Received date: 16 Nov 2016

Accepted date: 17 Mar 2017

Published date: 06 Nov 2017

Copyright

2017 Higher Education Press and Springer-Verlag GmbH Germany

Abstract

In this study, we developed a three-stage catalyst-adsorbent reactor for the catalytic hydrolysis of CF4. Each stage is composed of a catalyst bed followed by an adsorbent bed using Ca(OH)2 to remove HF. The three stages are connected in series to enhance the hydrolysis of CF4 and eliminate a scrubber to dissolve HF in water at the same time. With a 10 wt-% Ce/Al2O3 catalyst prepared by the incipient wetness method using boehmite and a granular calcium hydroxide as an adsorbent, the CF4 conversion in our proposed reactor was 7%–23% higher than that in a conventional single-bed catalytic reactor in the temperature range of 923–1023 K. In addition, experimental and numerical simulation (Aspen HYSYS®) results showed a reasonable trend of increased CF4 conversion with the adsorbent added and these results can be used as a useful design guideline for our newly proposed multistage reactor system.

Cite this article

Jae-Yun Han , Chang-Hyun Kim , Boreum Lee , Sung-Chan Nam , Ho-Young Jung , Hankwon Lim , Kwan-Young Lee , Shin-Kun Ryi . Sorption enhanced catalytic CF4 hydrolysis with a three-stage catalyst-adsorbent reactor[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(4) : 537 -544 . DOI: 10.1007/s11705-017-1651-1

Acknowledgement

This work was supported by the R&D Center for Reduction of Non-CO2 Greenhouse Gases (2015001690003) funded by Korea Ministry of Environment (MOE) as “Global Top Environment R&D Program”.
1
Tsai W T, Chen  H P, Hsien  W Y. A review of uses, environmental hazards and recovery/recycle technologies of perfluorocarbons (PFCs) emissions from the semiconductor manufacturing processes. Journal of Loss Prevention in the Process Industries, 2002, 15(2): 65–75

DOI

2
Bolmen R A. Semiconductor Safety Handbook: Safety and Health in the Semiconductor Industry. USA: Noyes Publications, 1998, 372

3
Kissa E. Fluorinated Surfactants and Repellents. USA: Marcel Dekker, 2001, 90

4
Maiss M, Brenninkmeijer  C A. Atmospheric SF6: Trends, sources, and prospects. Environmental Science & Technology, 1998, 32(20): 3077–3086

DOI

5
Abreu J A, Beer  J, Steinhilber F ,  Tobias S M ,  Weiss N O . For how long will the current grand maximum of solar activity persist? Geophysical Research Letters, 2008, 35(20): L20109

DOI

6
Koike K, Fukuda  T, Fujikawa S ,  Saeda M . Study of CF4, C2F6, SF6 and NF3 decomposition characteristics and etching performance in plasma state. Japanese Journal of Applied Physics, 1997, 36(Part 1, No. 9A 9R): 5724–5728

DOI

7
Weston R E Jr . Possible greenhouse effects of tetrafluoromethane and carbon dioxide emitted from aluminum production. Atmospheric Environment, 1996, 30(16): 2901–2910

DOI

8
Takita Y, Ninomiya  M, Miyake H ,  Wakamatsu H ,  Yoshinaga Y ,  Ishihara T . Catalytic decomposition of perfluorocarbons Part II. Decomposition of CF4 over AlPO4-rare earth phosphate catalysts. Physical Chemistry Chemical Physics, 1999, 1(18): 4501–4504

DOI

9
Xu X F, Jeon  J Y, Choi  M H, Kim  H Y, Choi  W C, Park  Y K. The modification and stability of γ-Al2O3 based catalysts for hydrolytic decomposition of CF4. Journal of Molecular Catalysis A Chemical, 2007, 266(1): 131–138

DOI

10
Song J Y, Chung  S H, Kim  M S, Seo  M G, Lee  Y H, Lee  K Y, Kim  J S. The catalytic decomposition of CF4 over Ce/Al2O3 modified by a cerium sulfate precursor. Journal of Molecular Catalysis A Chemical, 2013, 370: 50–55

DOI

11
El-Bahy Z M, Ohnishi  R, Ichikawa M . Hydrolysis of CF4 over alumina-based binary metal oxide catalysts. Applied Catalysis B: Environmental, 2003, 40(2): 81–91

DOI

12
Hua W, Zhang  F, Ma Z ,  Tang Y, Gao  Z. WO3/ZrO2 strong acid as a catalyst for the decomposition of chlorofluorocarbon (CFC-12). Chemical Research in Chinese Universities, 2000, 16: 185–187

13
Sarvar-Amini A, Sotudeh-Gharebagh  R, Bashiri H ,  Mostoufi N ,  Haghtalab A . Sequential simulation of a fluidized bed membrane reactor for the steam methane reforming using ASPEN PLUS. Energy & Fuels, 2007, 21(6): 3593–3598

DOI

14
Roberts M, Zabransky  R, Doong S ,  Lin J. Single membrane reactor configuration for separation of hydrogen, carbon dioxide and hydrogen sulfide. Final Technical Report. Institute of Gas Technology, Department of Energy, USA, 2008, https://www.osti.gov/scitech/biblio/958104

15
Jenkins H. Chemical Thermodynamics at a Glance. Australia: Wiley-Blackwell, 2008, 49

16
Roses L, Gallucci  F, Manzolini G ,  van Sint Annaland M . Experimental study of steam methane reforming in a Pd-based fluidized bed membrane reactor. Chemical Engineering Journal, 2013, 222: 307–320

DOI

17
Barelli L, Bidini  G, Gallorini F ,  Servili S . Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review. Energy, 2008, 33(4): 554–570

DOI

18
O’Brien J E ,  McKellar M G ,  Stoots C M ,  Herring J S ,  Hawkes G L . Parametric study of large-scale production of syngas via high-temperature co-electrolysis. International Journal of Hydrogen Energy, 2009, 34(9): 4216–4226

DOI

19
Ploegmakers J, Jelsma  A R, Van der Ham  A G J, Nijmeijer  K. Economic evaluation of membrane potential for ethylene/ethane separation in a retrofitted hybrid membrane-distillation plant using unisim design. Industrial & Engineering Chemistry Research, 2013, 52(19): 6524–6539

DOI

20
Choi J H, Park  M J, Kim  J, Ko Y ,  Lee S H ,  Baek I. Modelling and analysis of pre-combustion CO2 capture with membranes. Korean Journal of Chemical Engineering, 2013, 30(6): 1187–1194

DOI

21
Ystad P M, Lakew  A A, Bolland  O. Integration of low-temperature transcritical CO2 Rankine cycle in natural gas-fired combined cycle (NGCC) with post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2013, 12: 213–219

DOI

22
Park M Y, Kim  E S. Thermodynamic evaluation on the integrated system of VHTR and forward osmosis desalination process. Desalination, 2014, 337: 117–126

DOI

23
Nahar G A, Madhani  S S. Thermodynamics of hydrogen production by the steam reforming of butanol: Analysis of inorganic gases and light hydrocarbons. International Journal of Hydrogen Energy, 2010, 35(1): 98–109

DOI

24
Tasnadi-Asztalos Z ,  Agachi P S ,  Cormos C C . Evaluation of energy efficient low carbon hydrogen production concepts based on glycerol residues from biodiesel production. International Journal of Hydrogen Energy, 2015, 40(20): 7017–7027

DOI

25
Denz N, Ausberg  L, Bruns M ,  Viere T . Supporting resource efficiency in chemical industries-IT-based integration of flow sheet simulation and material flow analysis. Procedia CIRP, 2014, 15: 537–542

DOI

26
Ou L, Thilakaratne  R, Brown R C ,  Wright M M . Techno-economic analysis of transportation fuels from defatted microalgae via hydrothermal liquefaction and hydroprocessing. Biomass and Bioenergy, 2015, 72: 45–54

DOI

27
Leonzio G. Process analysis of biological Sabatier reaction for bio-methane production. Chemical Engineering Journal, 2016, 290: 490–498

DOI

28
Peters L, Hussain  A, Follmann M ,  Melin T ,  Hägg M B . CO2 removal from natural gas by employing amine absorption and membrane technology—a technical and economic analysis. Chemical Engineering Journal, 2011, 172(2): 952–960

DOI

29
Ahmad F, Lau  K K, Shariff  A M, Murshid  G. Process simulation and optimal design of membrane separation system for CO2 capture from natural gas. Computers & Chemical Engineering, 2012, 36: 119–128

DOI

30
Kazemi A, Malayeri  M, Shariati A . Feasibility study, simulation and economical evaluation of natural gas sweetening processes. Part 1: A case study on a low capacity plant in Iran. Journal of Natural Gas Science and Engineering, 2014, 20: 16–22

DOI

31
Qeshta H J, Abuyahya  S, Pal P ,  Banat F . Sweetening liquefied petroleum gas (LPG): Parametric sensitivity analysis using Aspen HYSYS. Journal of Natural Gas Science and Engineering, 2015, 26: 1011–1017

DOI

32
Sunny A, Solomon  P A, Aparna  K. Syngas production from regasified liquefied natural gas and its simulation using Aspen HYSYS. Journal of Natural Gas Science and Engineering, 2016, 30: 176–181

DOI

33
Lee B R, Lee  S, Jung H Y ,  Ryi S K ,  Lim H. Process simulation and economic analysis of reactor systems for perfluorinated compounds abatement without HF effluent. Frontiers of Chemical Science and Engineering, 2016, 10(4): 526–533

DOI

34
Jeon J Y, Xu  X F, Choi  M H, Kim  H Y, Park  Y K. Hydrolytic decomposition of PFCs over AlPO4-Al2O3 catalyst. Chemical Communications, 2003, 11(11): 1244–1245

DOI

35
Xu X F, Jeon  J Y, Choi  M H, Kim  H Y, Choi  W C, Park  Y K. A strategy to protect Al2O3-based PFC decomposition catalyst from deactivation. Chemistry Letters, 2005, 34(3): 364–365

DOI

36
Aldaco R, Garea  A, Irabien A . Calcium fluoride recovery from fluoride wastewater in a fluidized bed reactor. Water Research, 2007, 41(4): 810–818

DOI

Outlines

/