RESEARCH ARTICLE

Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer

  • Pengwei Zhang 1,2 ,
  • Junxiao Ye 1 ,
  • Ergang Liu 1,2 ,
  • Lu Sun 2 ,
  • Jiacheng Zhang 2 ,
  • Seung Jin Lee 3 ,
  • Junbo Gong , 1,2 ,
  • Huining He , 2 ,
  • Victor C. Yang , 1,4
Expand
  • 1. State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • 2. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostic), Tianjin Medical University, Tianjin 300072, China
  • 3. Department of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
  • 4. Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, MI 48109-1065, USA

Received date: 14 Feb 2017

Accepted date: 03 Mar 2017

Published date: 06 Nov 2017

Copyright

2017 Higher Education Press and Springer-Verlag GmbH Germany

Abstract

An anticancer drug delivery system consisting of DNA nanoparticles synthesized by rolling circle amplification (RCA) was developed for prostate cancer membrane antigen (PSMA) targeted cancer therapy. The template of RCA was a DNA oligodeoxynucleotide coded with PSMA-targeted aptamer, drug-loading domain, primer binding site and pH-sensitive spacer. Anticancer drug doxorubicin, as the model drug, was loaded into the drug-loading domain (multiple GC-pair sequences) of the DNA nanoparticles by intercalation. Due to the integrated pH-sensitive spacers in the nanoparticles, in an acidic environment, the cumulative release of doxorubicin was far more than the cumulative release of the drug in the normal physiological environment. In cell uptake experiments, treated with doxorubicin loaded DNA nanoparticles, PSMA-positive C4-2 cells could take up more doxorubicin than PSMA-null PC-3 cells. The prepared DNA nanoparticles showed the potential as drug delivery system for PSMA targeting prostate cancer therapy.

Cite this article

Pengwei Zhang , Junxiao Ye , Ergang Liu , Lu Sun , Jiacheng Zhang , Seung Jin Lee , Junbo Gong , Huining He , Victor C. Yang . Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(4) : 529 -536 . DOI: 10.1007/s11705-017-1645-z

Acknowledgements

This work was supported in part by National Key Research and Development Plan (2016YFE0119200) and the National Natural Science Foundation of China (Grant Nos. 81402856, A3 project-81361140344 and 21402143). This research was also partially sponsored by Tianjin Municipal Science and Technology Commission (15JCYBJC28700 and 15JCQNJC13600) and National Students’ Innovation and Entrepreneurship Training Program (201510062008).
1
ChenW, ZhengR, BaadeP D, Zhang S, ZengH , BrayF, JemalA, YuX Q, He J. Cancer statistics in China, 2015.CA: A Cancer Journal for Clinicians, 2016, 66(2): 115–132

DOI

2
BillinghamM E, Bristow M R, GlatsteinE , MasonJ W, MasekM A, DanielsJ R. Adriamycin cardiotoxicity: Endomyocardial biopsy evidence of enhancement by irradiation.American Journal of Surgical Pathology, 1977, 1(1): 17–23

DOI

3
Brannon-PeppasL, Blanchette J O. Nanoparticle and targeted systems for cancer therapy.Advanced Drug Delivery Reviews, 2004, 56(11): 1649–1659

DOI

4
GhoshA, HestonW D. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer.Journal of Cellular Biochemistry, 2004, 91(3): 528–539

DOI

5
FarokhzadO C, JonS, KhademhosseiniA , TranT N, LavanD A, LangerR. Nanoparticle-aptamer bioconjugates: A new approach for targeting prostate cancer cells.Cancer Research, 2004, 64(21): 7668–7672

DOI

6
KanwarJ, RoyK, MaremandaN, Subramanian K, VeeduR , BawaR. Nucleic acid-based aptamers: Applications, development and clinical trials.Current Medicinal Chemistry, 2015, 22(21): 2539–2557

DOI

7
JiaR, WangT, JiangQ, Wang Z, SongC , DingB. Self-assembled DNA nanostructures for drug delivery.Chinese Journal of Chemistry, 2016, 34(3): 265–272

DOI

8
ZhuG, NiuG, ChenX. Aptamer-drug conjugates.Bioconjugate Chemistry, 2015, 26(11): 2186–2197

DOI

9
StoltenburgR, Reinemann C, StrehlitzB . SELEX—a (r)evolutionary method to generate high-affinity nucleic acid ligands.Biomolecular Engineering, 2007, 24(4): 381–403

DOI

10
ZhuH, LiJ, ZhangX B, Ye M, TanW . Nucleic acid aptamer—mediated drug delivery for targeted cancer therapy.ChemMedChem, 2015, 10(1): 39–45

DOI

11
KeefeA D, PaiS, EllingtonA. Aptamers as therapeutics.Nature Reviews. Drug Discovery, 2010, 9(7): 537–550

DOI

12
NimjeeS M, Rusconi C P, SullengerB A . Aptamers: An emerging class of therapeutics.Annual Review of Medicine, 2005, 56(1): 555–583

DOI

13
PalchettiI, Mascini M. Nucleic acid biosensors for environmental pollution monitoring.Analyst (London), 2008, 133(7): 846–854

DOI

14
LupoldS E, HickeB J, LinY, Coffey D S. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen.Cancer Research, 2002, 62(14): 4029–4033

15
DharS, GuF X, LangerR, Farokhzad O C, LippardS J . Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt (IV) prodrug-PLGA-PEG nanoparticles.Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(45): 17356–17361

DOI

16
BagalkotV, Farokhzad O C, LangerR , JonS. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform.Angewandte Chemie International Edition, 2006, 45(48): 8149–8152

DOI

17
LeeI H, AnS, YuM K, Kwon H K, ImS H . Targeted chemoimmunotherapy using drug-loaded aptamer-dendrimer bioconjugates.Journal of Controlled Release, 2011, 155(3): 435–441

DOI

18
TanL, NeohK G, KangE T, Choe W S, SuX . PEGylated anti-MUC1 aptamer-doxorubicin complex for targeted drug delivery to MCF7 breast cancer cells.Macromolecular Bioscience, 2011, 11(10): 1331–1335

DOI

19
BoyaciogluO, StuartC H, KulikG, Gmeiner W H. Dimeric DNA aptamer complexes for high-capacity-targeted drug delivery using pH-sensitive covalent linkages.Mol Therapy-Nucleic Acids, 2013, 2(1): e107

20
StuartC H, SinghR, SmithT L, D’Agostino R Jr, CaudellD , BalajiK C, Gmeiner W H. Prostate-specific membrane antigen-targeted liposomes specifically deliver the Zn(2+) chelator TPEN inducing oxidative stress in prostate cancer cells.Nanomedicine (London), 2016, 11(10): 1207–1222

DOI

21
FireA, XuS Q. Rolling replication of short DNA circles.Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(10): 4641–4645

DOI

22
ZhaoW, AliM M, BrookM A, Li Y. Rolling circle amplification: Applications in nanotechnology and biodetection with functional nucleic acids.Angewandte Chemie International Edition, 2008, 47(34): 6330–6337

DOI

23
AliM M, LiF, ZhangZ, Zhang K, KangD K , AnkrumJ A, LeX C, ZhaoW. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine.Chemical Society Reviews, 2014, 43(10): 3324–3341

DOI

24
RohY H, LeeJ B, ShopsowitzK E , DreadenE C, MortonS W, PoonZ, Hong J, YaminI , BonnerD K, Hammond P T. Layer-by-layer assembled antisense DNA microsponge particles for efficient delivery of cancer therapeutics.ACS Nano, 2014, 8(10): 9767–9780

DOI

25
LeeH Y, JeongH, JungI Y, Jang B, SeoY C , LeeH, LeeH. DhITACT: DNA hydrogel formation by isothermal amplification of complementary target in fluidic channels.Advanced Materials, 2015, 27(23): 3513–3517

DOI

26
HamblinG D, Carneiro K M, FakhouryJ F , BujoldK E, Sleiman H F. Rolling circle amplification-templated DNA nanotubes show increased stability and cell penetration ability.Journal of the American Chemical Society, 2012, 134(6): 2888–2891

DOI

27
MeiL, ZhuG, QiuL, Wu C, ChenH , LiangH, CansizS, LvY, ZhangX, TanW. Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery.Nano Research, 2015, 8(11): 3447–3460

DOI

28
LizardiP M, HuangX, ZhuZ, Brayward P, ThomasD C , WardD C. Mutation detection and single-molecule counting using isothermal rolling-circle amplification.Nature Genetics, 1998, 19(3): 225–232

DOI

29
Am HongC, JangB, JeongE H, Jeong H, LeeH . Self-assembled DNA nanostructures prepared by rolling circle amplification for the delivery of siRNA conjugates.Chemical Communications, 2014, 50(86): 13049–13051

DOI

30
LvY, HuR, ZhuG, Zhang X, MeiL , LiuQ, QiuL, WuC, TanW. Preparation and biomedical applications of programmable and multifunctional DNA nanoflowers.Nature Protocols, 2015, 10(10): 1508–1524

DOI

31
ZhangL, ZhuG, MeiL, Wu C, QiuL , CuiC, LiuY, TengI T, Tan W. Self-assembled DNA immuno nanoflowers as multivalent CpG nanoagents.ACS Applied Materials & Interfaces, 2015, 7(43): 24069–24074

DOI

32
SunW, JiangT, LuY, ReiffM, MoR, GuZ. Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery.Journal of the American Chemical Society, 2014, 136(42): 14722–14725

DOI

33
MalloyA. Count, size and visualize nanoparticles.Materials Today, 2011, 14(4): 170–173

DOI

34
ZhuG, HuR, ZhaoZ, Chen Z, ZhangX , TanW. Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications.Journal of the American Chemical Society, 2013, 135(44): 16438–16445

DOI

Outlines

/