Frontiers of Chemical Science and Engineering >
Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer
Received date: 14 Feb 2017
Accepted date: 03 Mar 2017
Published date: 06 Nov 2017
Copyright
An anticancer drug delivery system consisting of DNA nanoparticles synthesized by rolling circle amplification (RCA) was developed for prostate cancer membrane antigen (PSMA) targeted cancer therapy. The template of RCA was a DNA oligodeoxynucleotide coded with PSMA-targeted aptamer, drug-loading domain, primer binding site and pH-sensitive spacer. Anticancer drug doxorubicin, as the model drug, was loaded into the drug-loading domain (multiple GC-pair sequences) of the DNA nanoparticles by intercalation. Due to the integrated pH-sensitive spacers in the nanoparticles, in an acidic environment, the cumulative release of doxorubicin was far more than the cumulative release of the drug in the normal physiological environment. In cell uptake experiments, treated with doxorubicin loaded DNA nanoparticles, PSMA-positive C4-2 cells could take up more doxorubicin than PSMA-null PC-3 cells. The prepared DNA nanoparticles showed the potential as drug delivery system for PSMA targeting prostate cancer therapy.
Pengwei Zhang , Junxiao Ye , Ergang Liu , Lu Sun , Jiacheng Zhang , Seung Jin Lee , Junbo Gong , Huining He , Victor C. Yang . Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(4) : 529 -536 . DOI: 10.1007/s11705-017-1645-z
1 |
ChenW, ZhengR, BaadeP D, Zhang S, ZengH , BrayF, JemalA, YuX Q, He J. Cancer statistics in China, 2015.CA: A Cancer Journal for Clinicians, 2016, 66(2): 115–132
|
2 |
BillinghamM E, Bristow M R, GlatsteinE , MasonJ W, MasekM A, DanielsJ R. Adriamycin cardiotoxicity: Endomyocardial biopsy evidence of enhancement by irradiation.American Journal of Surgical Pathology, 1977, 1(1): 17–23
|
3 |
Brannon-PeppasL, Blanchette J O. Nanoparticle and targeted systems for cancer therapy.Advanced Drug Delivery Reviews, 2004, 56(11): 1649–1659
|
4 |
GhoshA, HestonW D. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer.Journal of Cellular Biochemistry, 2004, 91(3): 528–539
|
5 |
FarokhzadO C, JonS, KhademhosseiniA , TranT N, LavanD A, LangerR. Nanoparticle-aptamer bioconjugates: A new approach for targeting prostate cancer cells.Cancer Research, 2004, 64(21): 7668–7672
|
6 |
KanwarJ, RoyK, MaremandaN, Subramanian K, VeeduR , BawaR. Nucleic acid-based aptamers: Applications, development and clinical trials.Current Medicinal Chemistry, 2015, 22(21): 2539–2557
|
7 |
JiaR, WangT, JiangQ, Wang Z, SongC , DingB. Self-assembled DNA nanostructures for drug delivery.Chinese Journal of Chemistry, 2016, 34(3): 265–272
|
8 |
ZhuG, NiuG, ChenX. Aptamer-drug conjugates.Bioconjugate Chemistry, 2015, 26(11): 2186–2197
|
9 |
StoltenburgR, Reinemann C, StrehlitzB . SELEX—a (r)evolutionary method to generate high-affinity nucleic acid ligands.Biomolecular Engineering, 2007, 24(4): 381–403
|
10 |
ZhuH, LiJ, ZhangX B, Ye M, TanW . Nucleic acid aptamer—mediated drug delivery for targeted cancer therapy.ChemMedChem, 2015, 10(1): 39–45
|
11 |
KeefeA D, PaiS, EllingtonA. Aptamers as therapeutics.Nature Reviews. Drug Discovery, 2010, 9(7): 537–550
|
12 |
NimjeeS M, Rusconi C P, SullengerB A . Aptamers: An emerging class of therapeutics.Annual Review of Medicine, 2005, 56(1): 555–583
|
13 |
PalchettiI, Mascini M. Nucleic acid biosensors for environmental pollution monitoring.Analyst (London), 2008, 133(7): 846–854
|
14 |
LupoldS E, HickeB J, LinY, Coffey D S. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen.Cancer Research, 2002, 62(14): 4029–4033
|
15 |
DharS, GuF X, LangerR, Farokhzad O C, LippardS J . Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt (IV) prodrug-PLGA-PEG nanoparticles.Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(45): 17356–17361
|
16 |
BagalkotV, Farokhzad O C, LangerR , JonS. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform.Angewandte Chemie International Edition, 2006, 45(48): 8149–8152
|
17 |
LeeI H, AnS, YuM K, Kwon H K, ImS H . Targeted chemoimmunotherapy using drug-loaded aptamer-dendrimer bioconjugates.Journal of Controlled Release, 2011, 155(3): 435–441
|
18 |
TanL, NeohK G, KangE T, Choe W S, SuX . PEGylated anti-MUC1 aptamer-doxorubicin complex for targeted drug delivery to MCF7 breast cancer cells.Macromolecular Bioscience, 2011, 11(10): 1331–1335
|
19 |
BoyaciogluO, StuartC H, KulikG, Gmeiner W H. Dimeric DNA aptamer complexes for high-capacity-targeted drug delivery using pH-sensitive covalent linkages.Mol Therapy-Nucleic Acids, 2013, 2(1): e107
|
20 |
StuartC H, SinghR, SmithT L, D’Agostino R Jr, CaudellD , BalajiK C, Gmeiner W H. Prostate-specific membrane antigen-targeted liposomes specifically deliver the Zn(2+) chelator TPEN inducing oxidative stress in prostate cancer cells.Nanomedicine (London), 2016, 11(10): 1207–1222
|
21 |
FireA, XuS Q. Rolling replication of short DNA circles.Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(10): 4641–4645
|
22 |
ZhaoW, AliM M, BrookM A, Li Y. Rolling circle amplification: Applications in nanotechnology and biodetection with functional nucleic acids.Angewandte Chemie International Edition, 2008, 47(34): 6330–6337
|
23 |
AliM M, LiF, ZhangZ, Zhang K, KangD K , AnkrumJ A, LeX C, ZhaoW. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine.Chemical Society Reviews, 2014, 43(10): 3324–3341
|
24 |
RohY H, LeeJ B, ShopsowitzK E , DreadenE C, MortonS W, PoonZ, Hong J, YaminI , BonnerD K, Hammond P T. Layer-by-layer assembled antisense DNA microsponge particles for efficient delivery of cancer therapeutics.ACS Nano, 2014, 8(10): 9767–9780
|
25 |
LeeH Y, JeongH, JungI Y, Jang B, SeoY C , LeeH, LeeH. DhITACT: DNA hydrogel formation by isothermal amplification of complementary target in fluidic channels.Advanced Materials, 2015, 27(23): 3513–3517
|
26 |
HamblinG D, Carneiro K M, FakhouryJ F , BujoldK E, Sleiman H F. Rolling circle amplification-templated DNA nanotubes show increased stability and cell penetration ability.Journal of the American Chemical Society, 2012, 134(6): 2888–2891
|
27 |
MeiL, ZhuG, QiuL, Wu C, ChenH , LiangH, CansizS, LvY, ZhangX, TanW. Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery.Nano Research, 2015, 8(11): 3447–3460
|
28 |
LizardiP M, HuangX, ZhuZ, Brayward P, ThomasD C , WardD C. Mutation detection and single-molecule counting using isothermal rolling-circle amplification.Nature Genetics, 1998, 19(3): 225–232
|
29 |
Am HongC, JangB, JeongE H, Jeong H, LeeH . Self-assembled DNA nanostructures prepared by rolling circle amplification for the delivery of siRNA conjugates.Chemical Communications, 2014, 50(86): 13049–13051
|
30 |
LvY, HuR, ZhuG, Zhang X, MeiL , LiuQ, QiuL, WuC, TanW. Preparation and biomedical applications of programmable and multifunctional DNA nanoflowers.Nature Protocols, 2015, 10(10): 1508–1524
|
31 |
ZhangL, ZhuG, MeiL, Wu C, QiuL , CuiC, LiuY, TengI T, Tan W. Self-assembled DNA immuno nanoflowers as multivalent CpG nanoagents.ACS Applied Materials & Interfaces, 2015, 7(43): 24069–24074
|
32 |
SunW, JiangT, LuY, ReiffM, MoR, GuZ. Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery.Journal of the American Chemical Society, 2014, 136(42): 14722–14725
|
33 |
MalloyA. Count, size and visualize nanoparticles.Materials Today, 2011, 14(4): 170–173
|
34 |
ZhuG, HuR, ZhaoZ, Chen Z, ZhangX , TanW. Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications.Journal of the American Chemical Society, 2013, 135(44): 16438–16445
|
/
〈 |
|
〉 |