COMMUNICATION

Production of rhamnolipids-producing enzymes of Pseudomonas in E. coli and structural characterization

  • Kata Kiss ,
  • Wei Ting Ng ,
  • Qingxin Li
Expand
  • Institute of Chemical & Engineering Sciences, Agency for Science, Technology and Research, Jurong Island 627833, Singapore

Received date: 11 Sep 2016

Accepted date: 20 Dec 2016

Published date: 17 Mar 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Rhamnolipids are a class of biosurfactants that have a great potential to be used in industries. Five proteins/enzymes, namely RhlA, RhlB, RhlC, RhlG and RhlI, are critical for the production of rhamnolipids in Pseudomonas aeruginosa. Four of the 5 proteins except RhlC were successfully over-expressed in E. coli and three of them (RhlA, RhlB and RhlI) were purified and obtained in milligram quantities. The purified proteins were shown to be folded in solution. Homology models were built for RhlA, RhlB and RhlI. These results lay a basis for further structural and functional characterization of these proteins in vitro to favor the construction of super strains for rhamnolipids production.

Cite this article

Kata Kiss , Wei Ting Ng , Qingxin Li . Production of rhamnolipids-producing enzymes of Pseudomonas in E. coli and structural characterization[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(1) : 133 -138 . DOI: 10.1007/s11705-017-1637-z

Acknowledgments

This research is supported by the Science and Engineering Research Council (SERC) of the Agency for Science, Technology and Research (A*STAR) of Singapore (SERC grant number: 1526004161).
1
Banat I M, Makkar R S, Cameotra S S. Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology, 2000, 53(5): 495–508

DOI

2
Desai J D, Banat I M. Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 1997, 61(1): 47–64

3
Makkar R, Cameotra S. An update on the use of unconventional substrates for biosurfactant production and their new applications. Applied Microbiology and Biotechnology, 2002, 58(4): 428–434

DOI

4
Lovaglio R B, Silva V L, Ferreira H, Hausmann R, Contiero J. Rhamnolipids know-how: Looking for strategies for its industrial dissemination. Biotechnology Advances, 2015, 33(8): 1715–1726

DOI

5
Dobler L, Vilela L F, Almeida R V, Neves B C. Rhamnolipids in perspective: Gene regulatory pathways, metabolic engineering, production and technological forecasting. New Biotechnology, 2016, 33(1): 123–135

DOI

6
Shekhar S, Sundaramanickam A, Balasubramanian T. Biosurfactant producing microbes and their potential applications: A review. Critical Reviews in Environmental Science and Technology, 2015, 45(14): 1522–1554

DOI

7
Henkel M, Müller M M, Kügler J H, Lovaglio R B, Contiero J, Syldatk C, Hausmann R. Rhamnolipids as biosurfactants from renewable resources: Concepts for next-generation rhamnolipid production. Process Biochemistry, 2012, 47(8): 1207–1219

DOI

8
Müller M M, Kügler J H, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M, Syldatk C, Hausmann R. Rhamnolipids—next generation surfactants? Journal of Biotechnology, 2012, 162(4): 366–380

DOI

9
Wittgens A, Tiso T, Arndt T T, Wenk P, Hemmerich J, Muller C, Wichmann R, Kupper B, Zwick M, Wilhelm S, . Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microbial Cell Factories, 2011, 10(80), doi: 10.1186/1475-2859-10-80

10
Banat I M, Satpute S K, Cameotra S S, Patil R, Nyayanit N V. Cost effective technologies and renewable substrates for biosurfactants’ production. Frontiers in Microbiology, 2014, 5: 697

11
Ochsner U A, Fiechter A, Reiser J. Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. Journal of Biological Chemistry, 1994, 269(31): 19787–19795

12
Rahim R, Ochsner U A, Olvera C, Graninger M, Messner P, Lam J S, Soberon-Chavez G. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Molecular Microbiology, 2001, 40(3): 708–718

DOI

13
Zhu K, Rock C O. RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. Journal of Bacteriology, 2008, 190(9): 3147–3154

DOI

14
Ochsner U A, Reiser J. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(14): 6424–6428

DOI

15
Ochsner U A, Koch A K, Fiechter A, Reiser J. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Journal of Bacteriology, 1994, 176(7): 2044–2054

DOI

16
Parsek M R, Val D L, Hanzelka B L, Cronan J E Jr, Greenberg E P. Acyl homoserine-lactone quorum-sensing signal generation. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(8): 4360–4365

DOI

17
Miller D J, Zhang Y M, Rock C O, White S W. Structure of RhlG, an essential beta-ketoacyl reductase in the rhamnolipid biosynthetic pathway of Pseudomonas aeruginosa. Journal of Biological Chemistry, 2006, 281(26): 18025–18032

DOI

18
Jiang Y, Camara M, Chhabra S R, Hardie K R, Bycroft B W, Lazdunski A, Salmond G P, Stewart G S, Williams P. In vitro biosynthesis of the Pseudomonas aeruginosa quorum-sensing signal molecule N-butanoyl-L-homoserine lactone. Molecular Microbiology, 1998, 28(1): 193–203

DOI

19
Hoang T T, Ma Y, Stern R J, McNeil M R, Schweizer H P. Construction and use of low-copy number T7 expression vectors for purification of problem proteins: Purification of mycobacterium tuberculosis RmlD and Pseudomonas aeruginosa LasI and RhlI proteins, and functional analysis of purified RhlI. Gene, 1999, 237(2): 361–371

DOI

20
Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino T G, Bertoni M, Bordoli L, SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 2014, 42(Web Server issue): W252–258

21
Shinohara Y, Miyanaga A, Kudo F, Eguchi T. The crystal structure of the amidohydrolase VinJ shows a unique hydrophobic tunnel for its interaction with polyketide substrates. FEBS Letters, 2014, 588(6): 995–1000

DOI

22
Claesson M, Siitonen V, Dobritzsch D, Metsa-Ketela M, Schneider G. Crystal structure of the glycosyltransferase SnogD from the biosynthetic pathway of nogalamycin in Streptomyces nogalater. FEBS Journal, 2012, 279(17): 3251–3263

DOI

23
Chung J, Goo E, Yu S, Choi O, Lee J, Kim J, Kim H, Igarashi J, Suga H, Moon J S, . Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29): 12089–12094

DOI

24
Parsek M R, Schaefer A L, Greenberg E P. Analysis of random and site-directed mutations in rhII, a Pseudomonas aeruginosa gene encoding an acylhomoserine lactone synthase. Molecular Microbiology, 1997, 26(2): 301–310

DOI

Outlines

/