VIEWS & COMMENTS

Designer enzyme for green materials innovation: Lactate-polymerizing enzyme as a key catalyst

  • Seiichi Taguchi , 1,2
Expand
  • 1. Graduate School of Engineering, Hokkaido University, Hokkaido 060-0808, Japan
  • 2. JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan

Received date: 30 Aug 2016

Accepted date: 16 Jan 2017

Published date: 17 Mar 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Establishment of the regeneratable whole-cell catalyst platform for the production of biobased polymeric materials is a typical topic of synthetic biology. In this commentary, discovery story of a “lactate-polymerizing enzyme” (LPE) and LPE-based achievements for creating a new variety of polyesters with incorporated unnatural monomers are presented. Besides the importance of microbial platform itself is discussed referring to the “ballooning”-Escherichia coli.

Cite this article

Seiichi Taguchi . Designer enzyme for green materials innovation: Lactate-polymerizing enzyme as a key catalyst[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(1) : 139 -142 . DOI: 10.1007/s11705-017-1636-0

1
Lemoignei M. Produits dedehydration et de polymerisation delacideßoxobutyrique. Bulletin de la Société de Chimie Biologique, 1926, 8: 770–782

2
Doi Y, Steinbühel A.Methabolic Pathways and Engineering of PHA Biosynthesis. Weinheim: Wiley-VCH Verlag GmbH, 2002, 217–247

3
Lenz R W, Marchessault R H. Bacterial polyesters: Biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules, 2005, 6(1): 1–8

DOI

4
Anderson A J, Dawes E A. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiological Reviews, 1990, 54(4): 450–472

5
Ryner M, Stridsberg K, Albertsson A N, von Schenck H, Svensson M. Mechanism of ring-opening polymerization of 1,5-dioxepan-2-one and L-lactide with stannous 2-ethylhexanoate. A theoretical study. Macromolecules, 2001, 34(12): 3877–3881

DOI

6
Rehm B H. Polyester synthases: Natural catalysts for plastics. Biochemical Journal, 2003, 376(1): 15–33

DOI

7
Taguchi S, Doi Y. Evolution of polyhydroxyalkanoate (PHA) production system by “enzyme evolution”: Successful case studies of directed evolution. Macromolecular Bioscience, 2004, 4(3): 146–156

DOI

8
Nomura C T, Taguchi S. PHA synthase engineering toward superbiocatalysts for custom-made biopolymers. Applied Microbiology and Biotechnology, 2006, 73(5): 969–979

DOI

9
Taguchi S, Yamada M, Matsumoto K, Tajima K, Satoh Y, Munekata M, Ohno K, Kohda K, Shimamura T, Kambe H, . A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(45): 17323–17327

DOI

10
Tajima K, Satoh Y, Satoh T, Itoh R, Han X, Taguchi S, Kakuchi T, Munekata M. Chemo-enzymatic synthesis of poly(lactate-co-(3-hydroxybutyrate)) by a lactate-polymerizing enzyme. Macromolecules, 2009, 42(6): 1985–1989

DOI

11
Taguchi S. Current advances in microbial cell factories for lactate-based polyesters driven by lactate-polymerizing enzymes: Toward further creation of new LA-based polyesters. Polymer Degradation & Stability, 2010, 95(8): 1421–1428

DOI

12
Park S J, Kim T W, Kim M K, Lee S Y, Lim S C. Advanced bacterial polyhydroxyalkanoates: Towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnology Advances, 2012, 30(6): 1196–1206

DOI

13
Matsumoto K, Taguchi S. Enzyme and metabolic engineering for the production of novel polymers: Crossover of biological and chemical processes. Current Opinion in Biotechnology, 2013, 24(6): 1054–1060

DOI

14
Matsumoto K, Taguchi S. Biosynthetic polyesters consisting of 2-hydroxyalkanoic acids: Current challenges and unresolved questions. Applied Microbiology and Biotechnology, 2013, 97(18): 8011–8021

DOI

15
Volodina E, Schürmann M, Lindenkamp N, Steinbüchel A. Characterization of propionate CoA-transferase from Ralstoniaeutropha H16. Applied Microbiology and Biotechnology, 2014, 98(8): 3579–3589

DOI

16
Wittenborn E C, Jost M, Wei Y, Stubbe J A, Drennan C L. Structure of the catalytic domain of the class I polyhydroxybutyrate synthase from Cupriavidusnecator. Journal of Biological Chemistry, 2016, 291(48): 25264–25277

DOI

17
Yamada M, Matsumoto K, Uramoto S, Motohashi R, Abe H, Taguchi S. Lactate fraction dependent mechanical properties of semitransparent poly(lactate-co-3-hydroxybutyrate)s produced by control of lactyl-CoA monomer fluxes in recombinant Escherichia coli. Journal of Biotechnology, 2011, 154(4): 255–260

DOI

18
Utsunomia C, Matsumoto M, Taguchi S. Micobial secretion of D-lactate-based oligomers. ACS Sustainable Chemistry & Engineering, in press

19
Kadoya R, Matsumoto K, Ooi T, Taguchi S. MtgA deletion-triggered cell enlargement of Escherichia coli for enhanced intracellular polyester accumulation. PLoS One, 2015, 10(6): e0125163

DOI

20
Wu H, Chen J, Chen G Q. Engineering the growth pattern and cell morphology for enhanced PHB production by Escherichia coli. Applied Microbiology and Biotechnology, 2016, 100(23): 9907–9916

DOI

Outlines

/