Frontiers of Chemical Science and Engineering >
Genetic biosensors for small-molecule products: Design and applications in high-throughput screening
Received date: 15 Jul 2016
Accepted date: 30 Nov 2016
Published date: 17 Mar 2017
Copyright
Overproduction of small-molecule chemicals using engineered microbial cells has greatly reduced the production cost and promoted environmental protection. Notably, the rapid and sensitive evaluation of the in vivo concentrations of the desired products greatly facilitates the optimization process of cell factories. For this purpose, many genetic components have been adapted into in vivo biosensors of small molecules, which couple the intracellular concentrations of small molecules to easily detectable readouts such as fluorescence, absorbance, and cell growth. Such biosensors allow a high-throughput screening of the small-molecule products, and can be roughly classified as protein-based and RNA-based biosensors. This review summarizes the recent developments in the design and applications of biosensors for small-molecule products.
Qingzhuo Wang , Shuang-Yan Tang , Sheng Yang . Genetic biosensors for small-molecule products: Design and applications in high-throughput screening[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(1) : 15 -26 . DOI: 10.1007/s11705-017-1629-z
1 |
Schallmey M, Frunzke J, Eggeling L, Marienhagen J. Looking for the pick of the bunch: High-throughput screening of producing microorganisms with biosensors. Current Opinion in Biotechnology, 2014, 26: 148–154
|
2 |
Ro D K, Paradise E M, Ouellet M, Fisher K J, Newman K L, Ndungu J M, Ho K A, Eachus R A, Ham T S, Kirby J,
|
3 |
Martin V J J, Pitera D J, Withers S T, Newman J D, Keasling J D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnology, 2003, 21(7): 796–802
|
4 |
Choi Y J, Lee S Y. Microbial production of short-chain alkanes. Nature, 2013, 502(7472): 571–574
|
5 |
Dellomonaco C, Clomburg J M, Miller E N, Gonzalez R. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature, 2011, 476(7360): 355–359
|
6 |
Enquist-Newman M, Faust A M E, Bravo D D, Santos C N S, Raisner R M, Hanel A, Sarvabhowman P, Le C, Regitsky D D, Cooper S R,
|
7 |
Becker J, Zelder O, Hafner S, Schroder H, Wittmann C. From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for
|
8 |
Lee K H, Park J H, Kim T Y, Kim H U, Lee S Y. Systems metabolic engineering of Escherichia coli for
|
9 |
Kind S, Neubauer S, Becker J, Yamamoto M, Volkert M, von Abendroth G, Zelder O, Wittmann C. From zero to hero—production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metabolic Engineering, 2014, 25: 113–123
|
10 |
Zhang Y X, Perry K, Vinci V A, Powell K, Stemmer W P C, del Cardayre S B. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 2002, 415(6872): 644–646
|
11 |
Wang H H, Isaacs F J, Carr P A, Sun Z Z, Xu G, Forest C R, Church G M. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460(7257): 894–898
|
12 |
Cobb R E, Chao R, Zhao H M. Directed evolution: Past, present, and future. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(5): 1432–1440
|
13 |
Alper H, Miyaoku K, Stephanopoulos G. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nature Biotechnology, 2005, 23(5): 612–616
|
14 |
Jantama K, Haupt M J, Svoronos S A, Zhang X L, Moore J C, Shanmugam K T, Ingram L O. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnology and Bioengineering, 2008, 99(5): 1140–1153
|
15 |
Dietrich J A, McKee A E, Keasling J D. High-throughput metabolic engineering: Advances in small-molecule screening and selection. Annual Review of Biochemistry, 2010, 79(1): 563–590
|
16 |
Kim Y, Ingram L O, Shanmugam K T. Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Applied and Environmental Microbiology, 2007, 73(6): 1766–1771
|
17 |
Zhou S, Iverson A G, Grayburn W S. Engineering a native homoethanol pathway in Escherichia coli B for ethanol production. Biotechnology Letters, 2008, 30(2): 335–342
|
18 |
Solem C, Dehli T, Jensen P R. Rewiring Lactococcus lactis for ethanol production. Applied and Environmental Microbiology, 2013, 79(8): 2512–2518
|
19 |
Shen C R, Lan E I, Dekishima Y, Baez A, Cho K M, Liao J C. Driving forces enable high-titer anaerobic
|
20 |
Lim J H, Seo S W, Kim S Y, Jung G Y. Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metabolic Engineering, 2013, 20: 49–55
|
21 |
Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick J D, Osterhout R E, Stephen R,
|
22 |
Ida Y, Hirasawa T, Furusawa C, Shimizu H. Utilization of saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Applied Microbiology and Biotechnology, 2013, 97(11): 4811–4819
|
23 |
Zhang X, Jantama K, Moore J C, Shanmugam K T, Ingram L O. Production of
|
24 |
Jantama K, Zhang X, Moore J C, Shanmugam K T, Svoronos S A, Ingram L O. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnology and Bioengineering, 2008, 101(5): 881–893
|
25 |
Klein-Marcuschamer D, Ajikumar P K, Stephanopoulos G. Engineering microbial cell factories for biosynthesis of isoprenoid molecules: Beyond lycopene. Trends in Biotechnology, 2007, 25(9): 417–424
|
26 |
Santos C N S, Stephanopoulos G. Melanin-based high-throughput screen for
|
27 |
DeLoache W C, Russ Z N, Narcross L, Gonzales A M, Martin V J, Dueber J E. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nature Chemical Biology, 2015, 11(7): 465–471
|
28 |
Binder S, Schendzielorz G, Stabler N, Krumbach K, Hoffmann K, Bott M, Eggeling L. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biology, 2012, 13(5): 1
|
29 |
Lin H, Tao H, Cornish V W. Directed evolution of a glycosynthase via chemical complementation. Journal of the American Chemical Society, 2004, 126(46): 15051–15059
|
30 |
Baker K, Bleczinski C, Lin H, Salazar-Jimenez G, Sengupta D, Krane S, Cornish V W. Chemical complementation: A reaction-independent genetic assay for enzyme catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(26): 16537–16542
|
31 |
Frommer W B, Davidson M W, Campbell R E. Genetically encoded biosensors based on engineered fluorescent proteins. Chemical Society Reviews, 2009, 38(10): 2833–2841
|
32 |
Lalonde S, Ehrhardt D W, Frommer W B. Shining light on signaling and metabolic networks by genetically encoded biosensors. Current Opinion in Plant Biology, 2005, 8(6): 574–581
|
33 |
Okumoto S, Looger L L, Micheva K D, Reimer R J, Smith S J, Frommer W B. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(24): 8740–8745
|
34 |
de Lorimier R M, Smith J J, Dwyer M A, Looger L L, Sali K M, Paavola C D, Rizk S S, Sadigov S, Conrad D W, Loew L,
|
35 |
Fehr M, Lalonde S, Lager I, Wolff M W, Frommer W B. In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors. Journal of Biological Chemistry, 2003, 278(21): 19127–19133
|
36 |
Fehr M, Takanaga H, Ehrhardt D W, Frommer W B. Evidence for high-capacity bidirectional glucose transport across the endoplasmic reticulum membrane by genetically encoded fluorescence resonance energy transfer nanosensors. Molecular and Cellular Biology, 2005, 25(24): 11102–11112
|
37 |
Kaper T, Lager I, Looger L L, Chermak D, Frommer W B. Fluorescence resonance energy transfer sensors for quantitative monitoring of pentose and disaccharide accumulation in bacteria. Biotechnology for Biofuels, 2008, 1(1): 1
|
38 |
Fehr M, Frommer W B, Lalonde S. Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(15): 9846–9851
|
39 |
Deuschle K, Okumoto S, Fehr M, Looger L L, Kozhukh L, Frommer W B. Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Science, 2005, 14(9): 2304–2314
|
40 |
Okada S, Ota K, Ito T. Circular permutation of ligand-binding module improves dynamic range of genetically encoded FRET-based nanosensor. Protein Science, 2009, 18(12): 2518–2527
|
41 |
Serganov A, Nudler E. A decade of riboswitches. Cell, 2013, 152(1-2): 17–24
|
42 |
Yang J, Seo S W, Jang S, Shin S I, Lim C H, Roh T Y, Jung G Y. Synthetic RNA devices to expedite the evolution of metabolite-producing microbes. Nature Communications, 2013, 4: 7
|
43 |
Wachsmuth M, Findeiss S, Weissheimer N, Stadler P F, Morl M. De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Research, 2013, 41(4): 2541–2551
|
44 |
Trausch J J, Ceres P, Reyes F E, Batey R T. The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure (London, England), 2011, 19(10): 1413–1423
|
45 |
Desai S K, Gallivan J P. Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. Journal of the American Chemical Society, 2004, 126(41): 13247–13254
|
46 |
Win M N, Smolke C D. Higher-order cellular information processing with synthetic RNA devices. Science, 2008, 322(5900): 456–460
|
47 |
Michener J K, Smolke C D. High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. Metabolic Engineering, 2012, 14(4): 306–316
|
48 |
Eckdahl T T, Campbell A M, Heyer L J, Poet J L, Blauch D N, Snyder N L, Atchley D T, Baker E J, Brown M, Brunner E C,
|
49 |
Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287): 818–822
|
50 |
Win M N, Smolke C D. A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(36): 14283–14288
|
51 |
Ouellet J. RNA Fluorescence with light-up aptamers. Frontiers in Chemistry, 2016, 4: 29
|
52 |
Nakayama S, Luo Y, Zhou J, Dayie T K, Sintim H O. Nanomolar fluorescent detection of c-di-GMP using a modular aptamer strategy. Chemical Communications, 2012, 48(72): 9059–9061
|
53 |
Wang X C, Wilson S C, Hammond M C. Next-generation RNA-based fluorescent biosensors enable anaerobic detection of cyclic di-GMP. Nucleic Acids Research, 2016, 44(17): e139–e139
|
54 |
Kellenberger C A, Hammond M C. In vitro analysis of riboswitch-Spinach aptamer fusions as metabolite-sensing fluorescent biosensors. Methods in Enzymology, 2015, 550: 147–172
|
55 |
Paige J S, Nguyen-Duc T, Song W, Jaffrey S R. Fluorescence imaging of cellular metabolites with RNA. Science, 2012, 335(6073): 1194
|
56 |
Su Y, Hickey S F, Keyser S G, Hammond M C. In vitro and in vivo enzyme activity screening via RNA-based fluorescent biosensors for S-adenosyl-
|
57 |
Kellenberger C A, Chen C, Whiteley A T, Portnoy D A, Hammond M C. RNA-based fluorescent biosensors for live cell imaging of second messenger cyclic di-AMP. Journal of the American Chemical Society, 2015, 137(20): 6432–6435
|
58 |
Binder S, Siedler S, Marienhagen J, Bott M, Eggeling L. Recombineering in corynebacterium glutamicum combined with optical nanosensors: A general strategy for fast producer strain generation. Nucleic Acids Research, 2013, 41(12): 6360–6369
|
59 |
Schendzielorz G, Dippong M, Grunberger A, Kohlheyer D, Yoshida A, Binder S, Nishiyama C, Nishiyama M, Bott M, Eggeling L. Taking control over control: Use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways. ACS Synthetic Biology, 2014, 3(1): 21–29
|
60 |
Lange C, Mustafi N, Frunzke J, Kennerknecht N, Wessel M, Bott M, Wendisch V F. Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for
|
61 |
Mustafi N, Grunberger A, Kohlheyer D, Bott M, Frunzke J. The development and application of a single-cell biosensor for the detection of
|
62 |
Mahr R, Gatgens C, Gatgens J, Polen T, Kalinowski J, Frunzke J. Biosensor-driven adaptive laboratory evolution of
|
63 |
Mustafi N, Grunberger A, Mahr R, Helfrich S, Noh K, Blombach B, Kohlheyer D, Frunzke J. Application of a genetically encoded biosensor for live cell imaging of
|
64 |
Bogner M, Ludewig U. Visualization of arginine influx into plant cells using a specific FRET-sensor. Journal of Fluorescence, 2007, 17(4): 350–360
|
65 |
Mohsin M, Ahmad A. Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells. Biosensors & Bioelectronics, 2014, 59: 358–364
|
66 |
Mohsin M, Abdin M Z, Nischal L, Kardam H, Ahmad A. Genetically encoded FRET-based nanosensor for in vivo measurement of leucine. Biosensors & Bioelectronics, 2013, 50: 72–77
|
67 |
Wang J M, Gao D F, Yu X L, Li W, Qi Q S. Evolution of a chimeric aspartate kinase for
|
68 |
Liu Y N, Li Q G, Zheng P, Zhang Z D, Liu Y F, Sun C M, Cao G Q, Zhou W J, Wang X W, Zhang D W,
|
69 |
Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister W, Surette M G, Alon U. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nature Methods, 2006, 3(8): 623–628
|
70 |
Mahr R, von Boeselager R F, Wiechert J, Frunzke J. Screening of an Escherichia coli promoter library for a phenylalanine biosensor.
|
71 |
Dietrich J A, Shis D L, Alikhani A, Keasling J D. Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis. ACS Synthetic Biology, 2013, 2(1): 47–58
|
72 |
Szmidt-Middleton H L, Ouellet M, Adams P D, Keasling J D, Mukhopadhyay A. Utilizing a highly responsive gene, yhjX, in E. coli based production of 1,4-butanediol. Chemical Engineering Science, 2013, 103: 68–73
|
73 |
Uchiyama T, Miyazaki K. Product-induced gene expression, a product-responsive reporter assay used to screen metagenomic libraries for enzyme-encoding genes. Applied and Environmental Microbiology, 2010, 76(21): 7029–7035
|
74 |
van Sint Fiet S, van Beilen J B, Witholt B. Selection of biocatalysts for chemical synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(6): 1693–1698
|
75 |
Raman S, Rogers J K, Taylor N D, Church G M. Evolution-guided optimization of biosynthetic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(50): 17803–17808
|
76 |
Chen W, Zhang S, Jiang P X, Yao J, He Y Z, Chen L C, Gui X W, Dong Z Y, Tang S Y. Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis. Metabolic Engineering, 2015, 30: 149–155
|
77 |
Mukherjee K, Bhattacharyya S, Peralta-Yahya P. GPCR-based chemical biosensors for medium-chain fatty acids. ACS Synthetic Biology, 2015, 4(12): 1261–1269
|
78 |
Tang S Y, Cirino P C. Design and application of a mevalonate-responsive regulatory protein. Angewandte Chemie International Edition, 2011, 50(5): 1084–1086
|
79 |
Tang S Y, Qian S, Akinterinwa O, Frei C S, Gredell J A, Cirino P C. Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter. Journal of the American Chemical Society, 2013, 135(27): 10099–10103
|
80 |
Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany, 2011, 62(8): 2465–2483
|
81 |
Siedler S, Stahlhut S G, Malla S, Maury J, Neves A R. Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli. Metabolic Engineering, 2014, 21: 2–8
|
82 |
Marin A M, Souza E M, Pedrosa F O, Souza L M, Sassaki G L, Baura V A, Yates M G, Wassem R, Monteiro R A. Naringenin degradation by the endophytic diazotroph Herbaspirillum seropedicae SmR1. Microbiology, 2013, 159(1): 167–175
|
83 |
Teran W, Felipe A, Segura A, Rojas A, Ramos J L, Gallegos M T. Antibiotic-dependent induction of Pseudomonas putida DOT-T1E TtgABC efflux pump is mediated by the drug binding repressor TtgR. Antimicrobial Agents and Chemotherapy, 2003, 47(10): 3067–3072
|
84 |
Jenison R D, Gill S C, Pardi A, Polisky B. High-resolution molecular discrimination by RNA. Science, 1994, 263(5152): 1425–1429
|
85 |
Thompson K M, Syrett H A, Knudsen S M, Ellington A D. Group I aptazymes as genetic regulatory switches. BMC Biotechnology, 2002, 2(1): 1
|
86 |
Chou H H, Keasling J D. Programming adaptive control to evolve increased metabolite production. Nature Communications, 2013, 4: 8
|
87 |
Park Y H, Koo H M, Moon J O, Kim S J, Kim H J, Lee J K.
|
88 |
Wang Y, Li Q, Zheng P, Guo Y, Wang L, Zhang T, Sun J, Ma Y. Evolving the
|
89 |
Kim Y S, Gu M B. Advances in aptamer screening and small molecule aptasensors. Biosensors Based on Aptamers and Enzymes, 2014, 140: 29–67
|
90 |
Ruscito A, DeRosa M C. Small-molecule binding aptamers: Selection strategies, characterization, and applications. Frontiers in Chemistry, 2016, 4: 14
|
91 |
McKeague M, Derosa M C. Challenges and opportunities for small molecule aptamer development. Journal of Nucleic Acids, 2012, 2012: 748913
|
/
〈 | 〉 |