REVIEW ARTICLE

Genetic biosensors for small-molecule products: Design and applications in high-throughput screening

  • Qingzhuo Wang 1,2 ,
  • Shuang-Yan Tang , 3 ,
  • Sheng Yang , 1,4
Expand
  • 1. Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai 200025, China
  • 2. University of the Chinese Academy of Sciences, Beijing 100049, China
  • 3. CAS Key Laboratory of Microbial Physiological and Metebolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
  • 4. Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China

Received date: 15 Jul 2016

Accepted date: 30 Nov 2016

Published date: 17 Mar 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Overproduction of small-molecule chemicals using engineered microbial cells has greatly reduced the production cost and promoted environmental protection. Notably, the rapid and sensitive evaluation of the in vivo concentrations of the desired products greatly facilitates the optimization process of cell factories. For this purpose, many genetic components have been adapted into in vivo biosensors of small molecules, which couple the intracellular concentrations of small molecules to easily detectable readouts such as fluorescence, absorbance, and cell growth. Such biosensors allow a high-throughput screening of the small-molecule products, and can be roughly classified as protein-based and RNA-based biosensors. This review summarizes the recent developments in the design and applications of biosensors for small-molecule products.

Cite this article

Qingzhuo Wang , Shuang-Yan Tang , Sheng Yang . Genetic biosensors for small-molecule products: Design and applications in high-throughput screening[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(1) : 15 -26 . DOI: 10.1007/s11705-017-1629-z

1
Schallmey M, Frunzke J, Eggeling L, Marienhagen J. Looking for the pick of the bunch: High-throughput screening of producing microorganisms with biosensors. Current Opinion in Biotechnology, 2014, 26: 148–154

DOI

2
Ro D K, Paradise E M, Ouellet M, Fisher K J, Newman K L, Ndungu J M, Ho K A, Eachus R A, Ham T S, Kirby J, . Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440(7086): 940–943

DOI

3
Martin V J J, Pitera D J, Withers S T, Newman J D, Keasling J D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnology, 2003, 21(7): 796–802

DOI

4
Choi Y J, Lee S Y. Microbial production of short-chain alkanes. Nature, 2013, 502(7472): 571–574

DOI

5
Dellomonaco C, Clomburg J M, Miller E N, Gonzalez R. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature, 2011, 476(7360): 355–359

DOI

6
Enquist-Newman M, Faust A M E, Bravo D D, Santos C N S, Raisner R M, Hanel A, Sarvabhowman P, Le C, Regitsky D D, Cooper S R, . Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature, 2013, 505(7482): 239–243

DOI

7
Becker J, Zelder O, Hafner S, Schroder H, Wittmann C. From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metabolic Engineering, 2011, 13(2): 159–168

DOI

8
Lee K H, Park J H, Kim T Y, Kim H U, Lee S Y. Systems metabolic engineering of Escherichia coli for L-threonine production. Molecular Systems Biology, 2007, 3(1): 149

9
Kind S, Neubauer S, Becker J, Yamamoto M, Volkert M, von Abendroth G, Zelder O, Wittmann C. From zero to hero—production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metabolic Engineering, 2014, 25: 113–123

DOI

10
Zhang Y X, Perry K, Vinci V A, Powell K, Stemmer W P C, del Cardayre S B. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 2002, 415(6872): 644–646

DOI

11
Wang H H, Isaacs F J, Carr P A, Sun Z Z, Xu G, Forest C R, Church G M. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460(7257): 894–898

DOI

12
Cobb R E, Chao R, Zhao H M. Directed evolution: Past, present, and future. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(5): 1432–1440

DOI

13
Alper H, Miyaoku K, Stephanopoulos G. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nature Biotechnology, 2005, 23(5): 612–616

DOI

14
Jantama K, Haupt M J, Svoronos S A, Zhang X L, Moore J C, Shanmugam K T, Ingram L O. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnology and Bioengineering, 2008, 99(5): 1140–1153

DOI

15
Dietrich J A, McKee A E, Keasling J D. High-throughput metabolic engineering: Advances in small-molecule screening and selection. Annual Review of Biochemistry, 2010, 79(1): 563–590

DOI

16
Kim Y, Ingram L O, Shanmugam K T. Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Applied and Environmental Microbiology, 2007, 73(6): 1766–1771

DOI

17
Zhou S, Iverson A G, Grayburn W S. Engineering a native homoethanol pathway in Escherichia coli B for ethanol production. Biotechnology Letters, 2008, 30(2): 335–342

DOI

18
Solem C, Dehli T, Jensen P R. Rewiring Lactococcus lactis for ethanol production. Applied and Environmental Microbiology, 2013, 79(8): 2512–2518

DOI

19
Shen C R, Lan E I, Dekishima Y, Baez A, Cho K M, Liao J C. Driving forces enable high-titer anaerobic L-butanol synthesis in Escherichia coli. Applied and Environmental Microbiology, 2011, 77(9): 2905–2915

DOI

20
Lim J H, Seo S W, Kim S Y, Jung G Y. Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metabolic Engineering, 2013, 20: 49–55

DOI

21
Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick J D, Osterhout R E, Stephen R, . Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nature Chemical Biology, 2011, 7(7): 445–452

DOI

22
Ida Y, Hirasawa T, Furusawa C, Shimizu H. Utilization of saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Applied Microbiology and Biotechnology, 2013, 97(11): 4811–4819

DOI

23
Zhang X, Jantama K, Moore J C, Shanmugam K T, Ingram L O. Production of L-alanine by metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 2007, 77(2): 355–366

DOI

24
Jantama K, Zhang X, Moore J C, Shanmugam K T, Svoronos S A, Ingram L O. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnology and Bioengineering, 2008, 101(5): 881–893

DOI

25
Klein-Marcuschamer D, Ajikumar P K, Stephanopoulos G. Engineering microbial cell factories for biosynthesis of isoprenoid molecules: Beyond lycopene. Trends in Biotechnology, 2007, 25(9): 417–424

DOI

26
Santos C N S, Stephanopoulos G. Melanin-based high-throughput screen for L-tyrosine production in Escherichia coli. Applied and Environmental Microbiology, 2008, 74(4): 1190–1197

DOI

27
DeLoache W C, Russ Z N, Narcross L, Gonzales A M, Martin V J, Dueber J E. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nature Chemical Biology, 2015, 11(7): 465–471

DOI

28
Binder S, Schendzielorz G, Stabler N, Krumbach K, Hoffmann K, Bott M, Eggeling L. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biology, 2012, 13(5): 1

DOI

29
Lin H, Tao H, Cornish V W. Directed evolution of a glycosynthase via chemical complementation. Journal of the American Chemical Society, 2004, 126(46): 15051–15059

DOI

30
Baker K, Bleczinski C, Lin H, Salazar-Jimenez G, Sengupta D, Krane S, Cornish V W. Chemical complementation: A reaction-independent genetic assay for enzyme catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(26): 16537–16542

DOI

31
Frommer W B, Davidson M W, Campbell R E. Genetically encoded biosensors based on engineered fluorescent proteins. Chemical Society Reviews, 2009, 38(10): 2833–2841

DOI

32
Lalonde S, Ehrhardt D W, Frommer W B. Shining light on signaling and metabolic networks by genetically encoded biosensors. Current Opinion in Plant Biology, 2005, 8(6): 574–581

DOI

33
Okumoto S, Looger L L, Micheva K D, Reimer R J, Smith S J, Frommer W B. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(24): 8740–8745

DOI

34
de Lorimier R M, Smith J J, Dwyer M A, Looger L L, Sali K M, Paavola C D, Rizk S S, Sadigov S, Conrad D W, Loew L, . Construction of a fluorescent biosensor family. Protein Science, 2002, 11(11): 2655–2675

DOI

35
Fehr M, Lalonde S, Lager I, Wolff M W, Frommer W B. In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors. Journal of Biological Chemistry, 2003, 278(21): 19127–19133

DOI

36
Fehr M, Takanaga H, Ehrhardt D W, Frommer W B. Evidence for high-capacity bidirectional glucose transport across the endoplasmic reticulum membrane by genetically encoded fluorescence resonance energy transfer nanosensors. Molecular and Cellular Biology, 2005, 25(24): 11102–11112

DOI

37
Kaper T, Lager I, Looger L L, Chermak D, Frommer W B. Fluorescence resonance energy transfer sensors for quantitative monitoring of pentose and disaccharide accumulation in bacteria. Biotechnology for Biofuels, 2008, 1(1): 1

DOI

38
Fehr M, Frommer W B, Lalonde S. Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(15): 9846–9851

DOI

39
Deuschle K, Okumoto S, Fehr M, Looger L L, Kozhukh L, Frommer W B. Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Science, 2005, 14(9): 2304–2314

DOI

40
Okada S, Ota K, Ito T. Circular permutation of ligand-binding module improves dynamic range of genetically encoded FRET-based nanosensor. Protein Science, 2009, 18(12): 2518–2527

DOI

41
Serganov A, Nudler E. A decade of riboswitches. Cell, 2013, 152(1-2): 17–24

DOI

42
Yang J, Seo S W, Jang S, Shin S I, Lim C H, Roh T Y, Jung G Y. Synthetic RNA devices to expedite the evolution of metabolite-producing microbes. Nature Communications, 2013, 4: 7

DOI

43
Wachsmuth M, Findeiss S, Weissheimer N, Stadler P F, Morl M. De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Research, 2013, 41(4): 2541–2551

DOI

44
Trausch J J, Ceres P, Reyes F E, Batey R T. The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure (London, England), 2011, 19(10): 1413–1423

DOI

45
Desai S K, Gallivan J P. Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. Journal of the American Chemical Society, 2004, 126(41): 13247–13254

DOI

46
Win M N, Smolke C D. Higher-order cellular information processing with synthetic RNA devices. Science, 2008, 322(5900): 456–460

DOI

47
Michener J K, Smolke C D. High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. Metabolic Engineering, 2012, 14(4): 306–316

DOI

48
Eckdahl T T, Campbell A M, Heyer L J, Poet J L, Blauch D N, Snyder N L, Atchley D T, Baker E J, Brown M, Brunner E C, . Programmed evolution for optimization of orthogonal metabolic output in bacteria. PLoS One, 2015, 10(2): 0118322

DOI

49
Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287): 818–822

DOI

50
Win M N, Smolke C D. A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(36): 14283–14288

DOI

51
Ouellet J. RNA Fluorescence with light-up aptamers. Frontiers in Chemistry, 2016, 4: 29

52
Nakayama S, Luo Y, Zhou J, Dayie T K, Sintim H O. Nanomolar fluorescent detection of c-di-GMP using a modular aptamer strategy. Chemical Communications, 2012, 48(72): 9059–9061

DOI

53
Wang X C, Wilson S C, Hammond M C. Next-generation RNA-based fluorescent biosensors enable anaerobic detection of cyclic di-GMP. Nucleic Acids Research, 2016, 44(17): e139–e139

DOI

54
Kellenberger C A, Hammond M C. In vitro analysis of riboswitch-Spinach aptamer fusions as metabolite-sensing fluorescent biosensors. Methods in Enzymology, 2015, 550: 147–172

DOI

55
Paige J S, Nguyen-Duc T, Song W, Jaffrey S R. Fluorescence imaging of cellular metabolites with RNA. Science, 2012, 335(6073): 1194

DOI

56
Su Y, Hickey S F, Keyser S G, Hammond M C. In vitro and in vivo enzyme activity screening via RNA-based fluorescent biosensors for S-adenosyl-L-homocysteine (SAH). Journal of the American Chemical Society, 2016, 138(22): 7040–7047

DOI

57
Kellenberger C A, Chen C, Whiteley A T, Portnoy D A, Hammond M C. RNA-based fluorescent biosensors for live cell imaging of second messenger cyclic di-AMP. Journal of the American Chemical Society, 2015, 137(20): 6432–6435

DOI

58
Binder S, Siedler S, Marienhagen J, Bott M, Eggeling L. Recombineering in corynebacterium glutamicum combined with optical nanosensors: A general strategy for fast producer strain generation. Nucleic Acids Research, 2013, 41(12): 6360–6369

DOI

59
Schendzielorz G, Dippong M, Grunberger A, Kohlheyer D, Yoshida A, Binder S, Nishiyama C, Nishiyama M, Bott M, Eggeling L. Taking control over control: Use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways. ACS Synthetic Biology, 2014, 3(1): 21–29

DOI

60
Lange C, Mustafi N, Frunzke J, Kennerknecht N, Wessel M, Bott M, Wendisch V F. Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for L-methionine and branched-chain amino acids. Journal of Biotechnology, 2012, 158(4): 231–241

DOI

61
Mustafi N, Grunberger A, Kohlheyer D, Bott M, Frunzke J. The development and application of a single-cell biosensor for the detection of L-methionine and branched-chain amino acids. Metabolic Engineering, 2012, 14(4): 449–457

DOI

62
Mahr R, Gatgens C, Gatgens J, Polen T, Kalinowski J, Frunzke J. Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum. Metabolic Engineering, 2015, 32: 184–194

DOI

63
Mustafi N, Grunberger A, Mahr R, Helfrich S, Noh K, Blombach B, Kohlheyer D, Frunzke J. Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains. PLoS One, 2014, 9(1): e85731

DOI

64
Bogner M, Ludewig U. Visualization of arginine influx into plant cells using a specific FRET-sensor. Journal of Fluorescence, 2007, 17(4): 350–360

DOI

65
Mohsin M, Ahmad A. Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells. Biosensors & Bioelectronics, 2014, 59: 358–364

DOI

66
Mohsin M, Abdin M Z, Nischal L, Kardam H, Ahmad A. Genetically encoded FRET-based nanosensor for in vivo measurement of leucine. Biosensors & Bioelectronics, 2013, 50: 72–77

DOI

67
Wang J M, Gao D F, Yu X L, Li W, Qi Q S. Evolution of a chimeric aspartate kinase for L-lysine production using a synthetic RNA device. Applied Microbiology and Biotechnology, 2015, 99(20): 8527–8536

DOI

68
Liu Y N, Li Q G, Zheng P, Zhang Z D, Liu Y F, Sun C M, Cao G Q, Zhou W J, Wang X W, Zhang D W, . Developing a high-throughput screening method for threonine overproduction based on an artificial promoter. Microbial Cell Factories, 2015, 14(1): 1

DOI

69
Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister W, Surette M G, Alon U. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nature Methods, 2006, 3(8): 623–628

DOI

70
Mahr R, von Boeselager R F, Wiechert J, Frunzke J. Screening of an Escherichia coli promoter library for a phenylalanine biosensor. Applied Microbiology and Biotechnology, 2016, 100(15):6739–6753

71
Dietrich J A, Shis D L, Alikhani A, Keasling J D. Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis. ACS Synthetic Biology, 2013, 2(1): 47–58

DOI

72
Szmidt-Middleton H L, Ouellet M, Adams P D, Keasling J D, Mukhopadhyay A. Utilizing a highly responsive gene, yhjX, in E. coli based production of 1,4-butanediol. Chemical Engineering Science, 2013, 103: 68–73

DOI

73
Uchiyama T, Miyazaki K. Product-induced gene expression, a product-responsive reporter assay used to screen metagenomic libraries for enzyme-encoding genes. Applied and Environmental Microbiology, 2010, 76(21): 7029–7035

DOI

74
van Sint Fiet S, van Beilen J B, Witholt B. Selection of biocatalysts for chemical synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(6): 1693–1698

DOI

75
Raman S, Rogers J K, Taylor N D, Church G M. Evolution-guided optimization of biosynthetic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(50): 17803–17808

DOI

76
Chen W, Zhang S, Jiang P X, Yao J, He Y Z, Chen L C, Gui X W, Dong Z Y, Tang S Y. Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis. Metabolic Engineering, 2015, 30: 149–155

DOI

77
Mukherjee K, Bhattacharyya S, Peralta-Yahya P. GPCR-based chemical biosensors for medium-chain fatty acids. ACS Synthetic Biology, 2015, 4(12): 1261–1269

DOI

78
Tang S Y, Cirino P C. Design and application of a mevalonate-responsive regulatory protein. Angewandte Chemie International Edition, 2011, 50(5): 1084–1086

DOI

79
Tang S Y, Qian S, Akinterinwa O, Frei C S, Gredell J A, Cirino P C. Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter. Journal of the American Chemical Society, 2013, 135(27): 10099–10103

DOI

80
Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany, 2011, 62(8): 2465–2483

DOI

81
Siedler S, Stahlhut S G, Malla S, Maury J, Neves A R. Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli. Metabolic Engineering, 2014, 21: 2–8

DOI

82
Marin A M, Souza E M, Pedrosa F O, Souza L M, Sassaki G L, Baura V A, Yates M G, Wassem R, Monteiro R A. Naringenin degradation by the endophytic diazotroph Herbaspirillum seropedicae SmR1. Microbiology, 2013, 159(1): 167–175

DOI

83
Teran W, Felipe A, Segura A, Rojas A, Ramos J L, Gallegos M T. Antibiotic-dependent induction of Pseudomonas putida DOT-T1E TtgABC efflux pump is mediated by the drug binding repressor TtgR. Antimicrobial Agents and Chemotherapy, 2003, 47(10): 3067–3072

DOI

84
Jenison R D, Gill S C, Pardi A, Polisky B. High-resolution molecular discrimination by RNA. Science, 1994, 263(5152): 1425–1429

DOI

85
Thompson K M, Syrett H A, Knudsen S M, Ellington A D. Group I aptazymes as genetic regulatory switches. BMC Biotechnology, 2002, 2(1): 1

DOI

86
Chou H H, Keasling J D. Programming adaptive control to evolve increased metabolite production. Nature Communications, 2013, 4: 8

DOI

87
Park Y H, Koo H M, Moon J O, Kim S J, Kim H J, Lee J K. L-Lysine-inducible promoter. US 07851198, <Date>Dec 14 2010</Date>, 2010

88
Wang Y, Li Q, Zheng P, Guo Y, Wang L, Zhang T, Sun J, Ma Y. Evolving the L-lysine high-producing strain of Escherichia coli using a newly developed high-throughput screening method. Journal of Industrial Microbiology & Biotechnology, 2016, 43(9): 1227–1235

DOI

89
Kim Y S, Gu M B. Advances in aptamer screening and small molecule aptasensors. Biosensors Based on Aptamers and Enzymes, 2014, 140: 29–67

DOI

90
Ruscito A, DeRosa M C. Small-molecule binding aptamers: Selection strategies, characterization, and applications. Frontiers in Chemistry, 2016, 4: 14

91
McKeague M, Derosa M C. Challenges and opportunities for small molecule aptamer development. Journal of Nucleic Acids, 2012, 2012: 748913

Outlines

/