RESEARCH ARTICLE

Construction, characterization and application of a genome-wide promoter library in Saccharomyces cerevisiae

  • Ting Yuan 1 ,
  • Yakun Guo 1 ,
  • Junkai Dong 1 ,
  • Tianyi Li 1 ,
  • Tong Zhou 1 ,
  • Kaiwen Sun 1 ,
  • Mei Zhang 2 ,
  • Qingyu Wu 1 ,
  • Zhen Xie 3 ,
  • Yizhi Cai 4 ,
  • Limin Cao 2 ,
  • Junbiao Dai , 1
Expand
  • 1. MOE Key Laboratory of Bioinformatics and Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
  • 2. College of Life Sciences, Capital Normal University, Beijing 100048, China
  • 3. MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
  • 4. School of Biological Sciences, The King’s Buildings, University of Edinburgh, Edinburgh, EH9 3BF, UK

Received date: 18 Aug 2016

Accepted date: 21 Nov 2016

Published date: 17 Mar 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Promoters are critical elements to control gene expression but could behave differently under various growth conditions. Here we report the construction of a genome-wide promoter library, in which each native promoter in Saccharomyces cerevisiae was cloned upstream of a yellow fluorescent protein (YFP) reporter gene. Nine libraries were arbitrarily defined and assembled in bacteria. The resulting pools of promoters could be prepared and transformed into a yeast strain either as centromeric plasmids or integrated into a genomic locus upon enzymatic treatment. Using fluorescence activated cell sorting, we classified the yeast strains based on YFP fluorescence intensity and arbitrarily divided the entire library into 12 bins, representing weak to strong promoters. Several strong promoters were identified from the most active bins and their activities were assayed under different growth conditions. Finally, these promoters were applied to drive the expression of genes in xylose utilization to improve fermentation efficiency. Together, this library could provide a quick solution to identify and utilize desired promoters under user-defined growth conditions.

Cite this article

Ting Yuan , Yakun Guo , Junkai Dong , Tianyi Li , Tong Zhou , Kaiwen Sun , Mei Zhang , Qingyu Wu , Zhen Xie , Yizhi Cai , Limin Cao , Junbiao Dai . Construction, characterization and application of a genome-wide promoter library in Saccharomyces cerevisiae[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(1) : 107 -116 . DOI: 10.1007/s11705-017-1621-7

Acknowledgements

We thank Jianhuo Fang at DNA sequencing facility in Tsinghua University for providing the sequencing service. This work was supported by the National Natural Science Foundation of China (Grant No. 31471254), Chinese Ministry of Science and Technology grant 2012CB725201 and Tsinghua University Initiative grant 20161080088.
1
Lee M E, Aswani A, Han A S, Tomlin C J, Dueber J E. Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Research, 2013, 41(22): 10668–10678

DOI

2
Paddon C J, Westfall P J, Pitera D J, Benjamin K, Fisher K, McPhee D, Leavell M D, Tai A, Main A, Eng D, High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496(7446): 528–532

DOI

3
Smanski M J, Bhatia S, Zhao D, Park Y, Woodruff L B A, Giannoukos G, Ciulla D, Busby M, Calderon J, Nicol R, Functional optimization of gene clusters by combinatorial design and assembly. Nature Biotechnology, 2014, 32(12): 1241–1249

DOI

4
Gibson D G, Young L, Chuang R Y, Venter J C, Hutchison C A III, Smith H O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 2009, 6(5): 343–345

DOI

5
Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high throughput capability. PLoS One, 2008, 3(11): e3647

DOI

6
Casini A, MacDonald J T, De Jonghe J, Christodoulou G, Freemont P S, Baldwin G S, Ellis T. One-pot DNA construction for synthetic biology: The modular overlap-directed assembly with linkers (MODAL) strategy. Nucleic Acids Research, 2014, 42(1): e7

DOI

7
Guo Y, Dong J, Zhou T, Auxillos J, Li T, Zhang W, Wang L, Shen Y, Luo Y, Zheng Y, YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae. Nucleic Acids Research, 2015, 43(13): e88

DOI

8
Lam F H, Ghaderi A, Fink G R, Stephanopoulos G. Biofuels. Engineering alcohol tolerance in yeast. Science, 2014, 346(6205): 71–75

DOI

9
Diao L, Liu Y, Qian F, Yang J, Jiang Y, Yang S. Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution. BMC Biotechnology, 2013, 13(1): 110–118

DOI

10
Caspeta L, Castillo T, Nielsen J. Modifying yeast tolerance to inhibitory conditions of ethanol production processes. Frontiers in Bioengineering and Biotechnology, 2015, 3: 184–198

DOI

11
Demeke M M, Dietz H, Li Y, Foulquie-Moreno M R, Mutturi S, Deprez S, Den Abt T, Bonini B M, Liden G, Dumortier F, Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnology for Biofuels, 2013, 6(1): 89–112

DOI

12
Zhang M M, Zhao X Q, Cheng C, Bai F W. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1. Biotechnology Journal, 2015, 10(12): 1903–1911

DOI

13
Cao L, Tang X, Zhang X, Zhang J, Tian X, Wang J, Xiong M, Xiao W. Two-stage transcriptional reprogramming in Saccharomyces cerevisiae for optimizing ethanol production from xylose. Metabolic Engineering, 2014, 24: 150–159

DOI

14
Smolke C D. Building outside of the box: iGEM and the biobricks foundation. Nature Biotechnology, 2009, 27(12): 1099–1102

DOI

15
Zucca S, Pasotti L, Politi N, Cusella De Angelis M G, Magni P. A standard vector for the chromosomal integration and characterization of biobrick parts in Escherichia coli. Journal of Biological Engineering, 2013, 7(1): 12–24

DOI

16
Sharon E, Kalma Y, Sharp A, Raveh-Sadka T, Levo M, Zeevi D, Keren L, Yakhini Z, Weinberger A, Segal E. Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nature Biotechnology, 2012, 30(6): 521–530

DOI

17
Solis-Escalante D, Kuijpers N G, van der Linden F H, Pronk J T, Daran J M, Daran-Lapujade P. Efficient simultaneous excision of multiple selectable marker cassettes using I-SceI-induced double-strand DNA breaks in Saccharomyces cerevisiae. FEMS Yeast Research, 2014, 14(5): 741–754

DOI

18
Plessis A, Perrin A, Haber J E, Dujon B. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics, 1992, 130(3): 451–460

19
Alper H, Fischer C, Nevoigt E, Stephanopoulos G. Tuning genetic control through promoter engineering. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36): 12678–12683

DOI

20
Keren L, Zackay O, Lotan-Pompan M, Barenholz U, Dekel E, Sasson V, Aidelberg G, Bren A, Zeevi D, Weinberger A, Promoters maintain their relative activity levels under different growth conditions. Molecular Systems Biology, 2013, 9(1): 701–717

DOI

21
Ho N W, Chen Z, Brainard A P, Sedlak M. Successful design and development of genetically engineered saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Advances in Biochemical Engineering/Biotechnology, 1999, 65: 163–192

DOI

22
Ha S J, Galazka J M, Kim S R, Choi J H, Yang X, Seo J H, Glass N L, Cate J H, Jin Y S. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(2): 504–509

DOI

23
Wei N, Oh E J, Million G, Cate J H, Jin Y S. Simultaneous utilization of cellobiose, xylose, and Acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform. ACS Synthetic Biology, 2015, 4(6): 707–713

DOI

24
Alper H, Fischer C, Nevoigt E, Stephanopoulos G. Tuning genetic control through promoter engineering. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36): 12678–12683

DOI

25
Curran K A, Crook N C, Karim A S, Gupta A, Wagman A M, Alper H S. Design of synthetic yeast promoters via tuning of nucleosome architecture. Nature Communications, 2014, 5: 4002–4021

DOI

26
Redden H, Alper H S. The development and characterization of synthetic minimal yeast promoters. Nature Communications, 2015, 6: 7810–7818

DOI

27
Rajkumar A S, Liu G, Bergenholm D, Arsovska D, Kristensen M, Nielsen J, Jensen M K, Keasling J D. Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Research, 2016, 44(17): e136

DOI

28
Kuyper M, Hartog M M, Toirkens M J, Almering M J, Winkler A A, van Dijken J P, Pronk J T. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Research, 2005, 5(4-5): 399–409

DOI

29
van Maris A J, Winkler A A, Kuyper M, de Laat W T, van Dijken J P, Pronk J T. Development of efficient xylose fermentation in Saccharomyces cerevisiae: Xylose isomerase as a key component. Advances in Biochemical Engineering/Biotechnology, 2007, 108: 179–204

DOI

30
Zhou H, Cheng J S, Wang B L, Fink G R, Stephanopoulos G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metabolic Engineering, 2012, 14(6): 611–622

DOI

Outlines

/