RESEARCH ARTICLE

Preparation and characterization of hydrothermally engineered TiO2-fly ash composite membrane

  • Kanchapogu Suresh ,
  • G. Pugazhenthi ,
  • R. Uppaluri
Expand
  • Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India

Received date: 27 May 2016

Accepted date: 19 Sep 2016

Published date: 12 May 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

This work targets the preparation and characterization of an inexpensive TiO2-fly ash composite membrane for oily wastewater treatment. The composite membrane was fabricated by depositing a hydrophilic TiO2 layer on a fly ash membrane via the hydrothermal method, and its structural, morphological and mechanical properties were evaluated. The separation potential of the composite membrane was evaluated for 100–200 mg·L–1 synthetic oily wastewater solutions. The results show that the composite membrane has excellent separation performance and can provide permeate stream with oil concentration of only 0.26–5.83 mg·L–1. Compared with the fly ash membrane in the average permeate flux and performance index (49.97 × 10–4 m3·m–2·s–1 and 0.4620%, respectively), the composite membrane exhibits better performance (51.63 × 10−4 m3·m−2·s−1 and 0.4974%). For the composite ash membrane, the response surface methodology based analysis inferred that the optimum process parameters to achieve maximum membrane flux and rejection are 207 kPa, 200 mg·L–1 and 0.1769 m·s–1 for applied pressure, feed concentration and cross flow velocity, respectively. Under these conditions, predicted responses are 41.33 × 10–4 m3·m−2·s−1 permeate flux and 98.7% rejection, which are in good agreement with the values obtained from experimental investigations (42.84 × 10−4 m3·m−2·s−1 and 98.82%). Therefore, we have demonstrated that the TiO2-fly ash composite membrane as value added product is an efficient way to recycle fly ash and thus mitigate environmental hazards associated with the disposal of oily wastewaters.

Cite this article

Kanchapogu Suresh , G. Pugazhenthi , R. Uppaluri . Preparation and characterization of hydrothermally engineered TiO2-fly ash composite membrane[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(2) : 266 -279 . DOI: 10.1007/s11705-017-1608-4

Acknowledgment

We would like to express our sincere gratitude to the Central Instruments Facility of IIT Guwahati for providing facilities to conduct FESEM analysis. Contact angle instrument used in this work was financially supported by a grant for Center of Excellence for Sustainable Polymers at IIT Guwahati from Department of Chemicals & Petrochemicals, Ministry of Chemicals and Fertilizers, Government of India. We sincerely acknowledge the support of Dr. S. Senthilkumar, Department of Biosciences and Bioengineering, IIT Guwahati for his valuable suggestions to improve data collection and RSM model analysis at critical operating conditions.
1
Ezzati A, Gorouhi E, Mohammadi T. Separation of water in oil emulsions using microfiltration. Desalination, 2005, 185(1-3): 371–382

DOI

2
Arnot T C, Field R W, Koltuniewicz A B. Cross-flow and dead-end microfiltration of oily-water emulsions. Journal of Membrane Science, 2000, 169(1): 1–15

DOI

3
Cumming I W, Holdich R G, Smith I D. The rejection of oil by microfiltration of a stabilised kerosene/water emulsion. Journal of Membrane Science, 2000, 169(1): 147–155

DOI

4
Mohammadi T, Pak A, Karbassian M, Golshan M. Effect of operating conditions on microfiltration of an oil-water emulsion by a kaolin membrane. Desalination, 2004, 168: 201–205

DOI

5
Hua F L, Tsang Y F, Wang Y J, Chan S Y, Chuand H, Sin H N. Performance study of ceramic microfiltration membrane for oily wastewater treatment. Chemical Engineering Journal, 2007, 128(2-3): 169–175

DOI

6
Chakrabarty B, Ghoshal A K, Purkait M K. Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane. Journal of Membrane Science, 2008, 325(1): 427–437

DOI

7
Srijaroonrat P, Julien E, Aurelle Y. Unstable secondary oil/water emulsion treatment using ultrafiltration: Fouling control by backflushing. Journal of Membrane Science, 1999, 159(1-2): 11–20

DOI

8
Zhou J E, Chang Q, Wang Y, Wang J, Meng G. Separation of stable oil-water emulsion by the hydrophilic nano-sized ZrO2 modified Al2O3 microfiltration membrane. Separation and Purification Technology, 2010, 75(3): 243–248

DOI

9
Cui J, Zhang X, Liu H, Liu S, Yeung K L. Preparation and application of zeolite/ceramic microfiltration membranes for treatment of oil contaminated water. Journal of Membrane Science, 2008, 325(1): 420–426

DOI

10
Cheryan M, Rajagopalan N. Membrane processing of oily streams. Wastewater treatment and waste reduction. Journal of Membrane Science, 1998, 151(1): 13–28

DOI

11
Campos J C, Borges R M H, Filho A M O, Nobrega R, Sant’Anna G L Jr. Oilfield wastewater treatment by combined microfiltration and biological processes. Water Research, 2002, 36(1): 95–104

DOI

12
Zare M, Ashtiani F Z, Fouladitajar A. CFD modeling and simulation of concentration polarization in microfiltration of oil-water emulsions; Application of an Eulerian multiphase model. Desalination, 2013, 324: 37–47

DOI

13
Sun S P, Hatton T A, Chan S Y, Chung T S. Novel thin-film composite nanofiltration hollow fiber membranes with double repulsion for effective removal of emerging organic matters from water. Journal of Membrane Science, 2012, 401-402: 152–162

DOI

14
Pan Y, Wang T, Sun H, Wang W. Preparation and application of titanium dioxide dynamic membranes in microfiltration of oil-in-water emulsions. Separation and Purification Technology, 2012, 89: 78–83

DOI

15
Montgomery D C. Response Surface Methods and Designs, Design and Analysis of Experiment. 8th ed. New York: John Wiley & Sons, 2013, 478–553

16
Montgomery D C. Response Surface Methods and other Approaches to Process Optimization, Design and Analysis of Experiments. 5th ed. New York: John Wiley & Sons, 2001, 427–510

17
Abadikhah H, Ashtiani F Z, Fouladitajar A. Nanofiltration of oily wastewater containing salt: Experimental studies and optimization using response surface methodology. Desalination and Water Treatment, 2015, 56: 2783–2796

18
Suresh K, Pugazhenthi G. Development of ceramic membranes from low-cost clays for the separation of oil-water emulsion. Desalination and Water Treatment, 2016, 57(5): 1927–1939

DOI

19
Suresh K, Srinu T, Ghoshal A K, Pugazhenthi G. Preparation and characterization of TiO2 and γ-Al2O3 composite membranes for the separation of oil-in-water emulsions. RSC Advances, 2016, 6(6): 4877–4888

DOI

20
Vasanth D, Pugazhenthi G, Uppaluri R. Cross-flow microfiltration of oil-in-water emulsions using low cost ceramic membranes. Desalination, 2013, 320: 86–95

DOI

21
Aleboyeh A, Daneshvar N, Kasiri M B. Optimization of C.I. Acid Red 14 azo dye removal by electrocoagulation batch process with response surface methodology. Chemical Engineering and Processing: Process Intensification, 2008, 47(5): 827–830

DOI

22
Khataee A R, Dehghan G. Optimization of biological treatment of a dye solution by macro algae Cladophora sp. using response surface methodology. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(1): 26–33

DOI

23
Liu H L, Chiou Y R. Optimal decolorization efficiency of Reactive Red 239 by UV/TiO2 photocatalytic process coupled with response surface methodology. Chemical Engineering Journal, 2005, 112(1-3): 173–179

DOI

24
Mittal P, Jana S, Mohanty K. Synthesis of low cost hydrophilic ceramic-polymeric composite membrane for treatment of oily wastewater. Desalination, 2011, 282: 54–62

DOI

25
Mueller J, Cen Y, Davis R H. Cross flow microfiltration of oily water. Journal of Membrane Science, 1997, 129(2): 221–235

DOI

26
Jonsson A S, Tragardh G. Ultrafiltration applications. Desalination, 1990, 77(1-3): 135–179

DOI

27
Zhu L, Chen M, Dong Y, Tang C Y, Huang A, Li L. A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion. Water Research, 2016, 90: 277–285

DOI

28
Sriharsha E, Uppaluri R, Purkait M K. Cross flow microfiltration of oil-water emulsions using kaolin based low cost ceramic membranes. Desalination, 2014, 341: 61–71

DOI

29
Li H J, Cao Y M, Qin J J, Jie X M, Wang T H, Liu J H, Yuan Q. Development and characterization of anti-fouling cellulose hollow fiber UF membranes for oil-water separation. Journal of Membrane Science, 2006, 279(1-2): 328–335

DOI

30
Chang Q, Zhou J E, Wang Y, Liang J, Zhang X, Cerneaux S, Wang X, Zhu Z, Dong Y. Application of ceramic microfiltration membrane modified by nano-TiO2 coating in separation of a stable oil-in-water emulsion. Journal of Membrane Science, 2014, 456: 128–133

DOI

31
Salahi A, Noshadi I, Badrnezhad R, Kanjilal B, Mohammadi T. Nano-porous membrane process for oily wastewater treatment: Optimization using response surface methodology. Journal of Environmental Chemical Engineering, 2013, 1(3): 218–225

DOI

32
Wang P, Xu N, Shi J. A pilot study of the treatment of waste rolling emulsion using zirconia microfiltration membranes. Journal of Membrane Science, 2000, 173(2): 159–166

DOI

33
Jokic A, Zavargo Z, Zeres Z, Tekic M. The effect of turbulence promoter on cross-flow microfiltration of yeast suspensions: A response surface methodology approach. Journal of Membrane Science, 2010, 350(1-2): 269–278

DOI

Outlines

/