Frontiers of Chemical Science and Engineering >
Functional ferritin nanoparticles for biomedical applications
Received date: 27 Sep 2016
Accepted date: 13 Nov 2016
Published date: 06 Nov 2017
Copyright
Ferritin, a major iron storage protein with a hollow interior cavity, has been reported recently to play many important roles in biomedical and bioengineering applications. Owing to the unique architecture and surface properties, ferritin nanoparticles offer favorable characteristics and can be either genetically or chemically modified to impart functionalities to their surfaces, and therapeutics or probes can be encapsulated in their interiors by controlled and reversible assembly/disassembly. There has been an outburst of interest regarding the employment of functional ferritin nanoparticles in nanomedicine. This review will highlight the recent advances in ferritin nanoparticles for drug delivery, bioassay, and molecular imaging with a particular focus on their biomedical applications.
Key words: nanomedicine; ferritin; drug delivery; bioassay; molecular imaging
Zhantong Wang , Haiyan Gao , Yang Zhang , Gang Liu , Gang Niu , Xiaoyuan Chen . Functional ferritin nanoparticles for biomedical applications[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(4) : 633 -646 . DOI: 10.1007/s11705-017-1620-8
1 |
Worwood M, Cook J D. Serum ferritin. Critical Reviews in Clinical Laboratory Sciences, 1979, 10(2): 171–204
|
2 |
Meldrum F C, Heywood B R, Mann S. Magnetoferritin: In vitro synthesis of a novel magnetic protein. Science, 1992, 257(5069): 522–523
|
3 |
Zeth K, Hoiczyk E, Okuda M. Ferroxidase-mediated iron oxide biomineralization: Novel pathways to multifunctional nanoparticles. Trends in Biochemical Sciences, 2016, 41(2): 190–203
|
4 |
Chasteen N D, Harrison P M. Mineralization in ferritin: An efficient means of iron storage. Journal of Structural Biology, 1999, 126(3): 182–194
|
5 |
Uchida M, Kang S, Reichhardt C, Harlen K, Douglas T. The ferritin superfamily: Supramolecular templates for materials synthesis. Biochimica et Biophysica Acta, 2010, 1800(8): 834–845
|
6 |
Bulte J W, Douglas T, Mann S, Frankel R B, Moskowitz B M, Brooks R A, Baumgarner C D, Vymazal J, Strub M P, Frank J A. Magnetoferritin: Characterization of a novel superparamagnetic MR contrast agent. Journal of Magnetic Resonance Imaging, 1994, 4(3): 497–505
|
7 |
Uchida M, Flenniken M L, Allen M, Willits D A, Crowley B E, Brumfield S, Willis A F, Jackiw L, Jutila M, Young M J, Douglas T. Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. Journal of the American Chemical Society, 2006, 128(51): 16626–16633
|
8 |
Okuda M, Iwahori K, Yamashita I, Yoshimura H. Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin. Biotechnology and Bioengineering, 2003, 84(2): 187–194
|
9 |
Galvez N, Sanchez P, Dominguez-Vera J M. Preparation of Cu and CuFe prussian blue derivative nanoparticles using the apoferritin cavity as nanoreactor. Dalton Transactions (Cambridge, England), 2005, 15(15): 2492–2494
|
10 |
Jeong G H, Yamazaki A, Suzuki S, Yoshimura H, Kobayashi Y, Homma Y. Cobalt-filled apoferritin for suspended single-walled carbon nanotube growth with narrow diameter distribution. Journal of the American Chemical Society, 2005, 127(23): 8238–8239
|
11 |
Fan R, Chew S W, Cheong V V, Orner B P. Fabrication of gold nanoparticles inside unmodified horse spleen apoferritin. Small, 2010, 6(14): 1483–1487
|
12 |
Zhen Z, Tang W, Chen H, Lin X, Todd T, Wang G, Cowger T, Chen X, Xie J. RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS Nano, 2013, 7(6): 4830–4837
|
13 |
Zhen Z, Tang W, Guo C, Chen H, Lin X, Liu G, Fei B, Chen X, Xu B, Xie J. Ferritin nanocages to encapsulate and deliver photosensitizers for efficient photodynamic therapy against cancer. ACS Nano, 2013, 7(8): 6988–6996
|
14 |
Tian Y, Yan X, Saha M L, Niu Z, Stang P J. Hierarchical self-assembly of responsive organoplatinum(ii) metallacycle-TMV complexes with turn-on fluorescence. Journal of the American Chemical Society, 2016, 138(37): 12033–12036
|
15 |
Harrison P M, Arosio P. The ferritins: Molecular properties, iron storage function and cellular regulation. Biochimica et Biophysica Acta, 1996, 1275(3): 161–203
|
16 |
Lin X, Xie J, Niu G, Zhang F, Gao H, Yang M, Quan Q, Aronova M A, Zhang G, Lee S, et al. Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Letters, 2011, 11(2): 814–819
|
17 |
Yamashita I, Iwahori K, Kumagai S. Ferritin in the field of nanodevices. Biochimica et Biophysica Acta, 2010, 1800(8): 846–857
|
18 |
Jolley C C, Uchida M, Reichhardt C, Harrington R, Kang S, Klem M T, Parise J B, Douglas T. Size and crystallinity in protein-templated inorganic nanoparticles. Chemistry of Materials, 2010, 22(16): 4612–4618
|
19 |
Zhang L, Swift J, Butts C A, Yerubandi V, Dmochowski I J. Structure and activity of apoferritin-stabilized gold nanoparticles. Journal of Inorganic Biochemistry, 2007, 101(11-12): 1719–1729
|
20 |
Rother M, Nussbaumer M G, Renggli K, Bruns N. Protein cages and synthetic polymers: A fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chemical Society Reviews, 2016, 45(22): 6213–6249
|
21 |
Ghirlando R, Mutskova R, Schwartz C. Enrichment and characterization of ferritin for nanomaterial applications. Nanotechnology, 2016, 27(4): 045102
|
22 |
Konijn A, Meyron-Holtz E, Levy R, Ben-Bassat H, Matzner Y. Specific binding of placental acidic isoferritin to cells of the T-cell line HD-MAR. FEBS Letters, 1990, 263(2): 229–232
|
23 |
Bretscher M S, Thomson J N. Distribution of ferritin receptors and coated pits on giant Hela cells. EMBO Journal, 1983, 2(4): 599–603
|
24 |
Lei Y, Hamada Y, Li J, Cong L, Wang N, Li Y, Zheng W, Jiang X. Targeted tumor delivery and controlled release of neuronal drugs with ferritin nanoparticles to regulate pancreatic cancer progression. Journal of Controlled Release, 2016, 232: 131–142
|
25 |
Zhao Y, Liang M, Li X, Fan K, Xiao J, Li Y, Shi H, Wang F, Choi H S, Cheng D, et al. Bioengineered magnetoferritin nanoprobes for single-dose nuclear-magnetic resonance tumor imaging. ACS Nano, 2016, 10(4): 4184–4191
|
26 |
Adams P C, Powell L W, Halliday J W. Isolation of a human hepatic ferritin receptor. Hepatology (Baltimore, MD.), 1988, 8(4): 719–721
|
27 |
Chen X. Multimodality imaging of tumor integrin alphavbeta3 expression. Mini-Reviews in Medicinal Chemistry, 2006, 6(2): 227–233
|
28 |
Liu Y, Wang Z, Zhang H, Lang L, Ma Y, He Q, Lu N, Huang P, Song J, Liu Z, et al. A photothermally responsive nanoprobe for bioimaging based on edman degradation. Nanoscale, 2016, 8(20): 10553–10557
|
29 |
Kitagawa T, Kosuge H, Uchida M, Dua M M, Iida Y, Dalman R L, Douglas T, McConnell M V. Rgd-conjugated human ferritin nanoparticles for imaging vascular inflammation and angiogenesis in experimental carotid and aortic disease. Molecular Imaging & Biology, 2012, 14(3): 315–324
|
30 |
Choi H S, Nasr K, Alyabyev S, Feith D, Lee J H, Kim S H, Ashitate Y, Hyun H, Patonay G, Strekowski L, et al. Synthesis and in vivo fate of zwitterionic near—infrared fluorophores. Angewandte Chemie International Edition, 2011, 50(28): 6258–6263
|
31 |
Agostinis P, Berg K, Cengel K A, Foster T H, Girotti A W, Gollnick S O, Hahn S M, Hamblin M R, Juzeniene A, Kessel D, et al. Photodynamic therapy of cancer: An update. CA: a Cancer Journal for Clinicians, 2011, 61(4): 250–281
|
32 |
Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. Journal of Photochemistry and Photobiology. B, Biology, 1997, 39(1): 1–18
|
33 |
Brown S B, Brown E A, Walker I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncology, 2004, 5(8): 497–508
|
34 |
Cairnduff F, Stringer M R, Hudson E J, Ash D V, Brown S B. Superficial photodynamic therapy with topical 5-aminolaevulinic acid for superficial primary and secondary skin cancer. British Journal of Cancer, 1994, 69(3): 605–608
|
35 |
Falvo E, Tremante E, Fraioli R, Leonetti C, Zamparelli C, Boffi A, Morea V, Ceci P, Giacomini P. Antibody-drug conjugates: Targeting melanoma with cisplatin encapsulated in protein-cage nanoparticles based on human ferritin. Nanoscale, 2013, 5(24): 12278–12285
|
36 |
MacKie R. Melanoma prevention and early detection. British Medical Bulletin, 1995, 51(3): 570–583
|
37 |
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA: a Cancer Journal for Clinicians, 2012, 62(1): 10–29
|
38 |
Greenlee R T, Murray T, Bolden S, Wingo P A. Cancer statistics, 2000. CA: a Cancer Journal for Clinicians, 2000, 50(1): 7–33
|
39 |
Rigel D S, Carucci J A. Malignant melanoma: Prevention, early detection, and treatment in the 21st century. CA: a Cancer Journal for Clinicians, 2000, 50(4): 215–236
|
40 |
Morgenstern D A, Asher R A, Fawcett J W. Chondroitin sulphate proteoglycans in the CNS injury response. Progress in Brain Research, 2002, 137: 313–332
|
41 |
Eisenmann K M, McCarthy J B, Simpson M A, Keely P J, Guan J L, Tachibana K, Lim L, Manser E, Furcht L T, Iida J. Melanoma chondroitin sulphate proteoglycan regulates cell spreading through Cdc42, Ack-1 and p130cas. Nature Cell Biology, 1999, 1(8): 507–513
|
42 |
Thon N, Haas C A, Rauch U, Merten T, Fässler R, Frotscher M, Deller T. The chondroitin sulphate proteoglycan brevican is upregulated by astrocytes after entorhinal cortex lesions in adult rats. European Journal of Neuroscience, 2000, 12(7): 2547–2558
|
43 |
Levine J, Nishiyama A. The NG2 chondroitin sulfate proteoglycan: A multifunctional proteoglycan associated with immature cells. Perspectives on Developmental Neurobiology, 1996, 3(4): 245–259
|
44 |
Oohira A, Matsui F, Watanabe E, Kushima Y, Maeda N. Developmentally regulated expression of a brain specific species of chondroitin sulfate proteoglycan, neurocan, identified with a monoclonal antibody LG2 in the rat cerebrum. Neuroscience, 1994, 60(1): 145–157
|
45 |
Levine J M, Stallcup W B. Plasticity of developing cerebellar cells in vitro studied with antibodies against the NG2 antigen. Journal of Neuroscience, 1987, 7(9): 2721–2731
|
46 |
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. Journal of Controlled Release, 2000, 65(1): 271–284
|
47 |
Mamo T, Poland G A. Nanovaccinology: The next generation of vaccines meets 21st century materials science and engineering. Vaccine, 2012, 30(47): 6609–6611
|
48 |
des Rieux A, Fievez V, Garinot M, Schneider Y J, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. Journal of Controlled Release, 2006, 116(1): 1–27
|
49 |
Singh M, Chakrapani A, O’Hagan D. Nanoparticles and microparticles as vaccine-delivery systems. Expert Review of Vaccines, 2007, 6(5): 797–808
|
50 |
Oyewumi M O, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: Correlating particle sizes and the resultant immune responses. Expert Review of Vaccines, 2010, 9(9): 1095–1107
|
51 |
Zhao L, Seth A, Wibowo N, Zhao C X, Mitter N, Yu C, Middelberg A P. Nanoparticle vaccines. Vaccine, 2014, 32(3): 327–337
|
52 |
Zhao K, Chen G, Shi X, Gao T, Li W, Zhao Y, Zhang F, Wu J, Cui X, Wang Y F. Preparation and efficacy of a live newcastle disease virus vaccine encapsulated in chitosan nanoparticles. PLoS One, 2012, 7(12): e53314
|
53 |
Borges O, Cordeiro-da-Silva A, Tavares J, Santarém N, de Sousa A, Borchard G, Junginger H E. Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69(2): 405–416
|
54 |
Nochi T, Yuki Y, Takahashi H, Sawada S, Mejima M, Kohda T, Harada N, Kong I G, Sato A, Kataoka N, et al. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nature Materials, 2010, 9(7): 572–578
|
55 |
Stone J W, Thornburg N J, Blum D L, Kuhn S J, Wright D W, Crowe J E Jr. Gold nanorod vaccine for respiratory syncytial virus. Nanotechnology, 2013, 24(29): 295102
|
56 |
Wang T, Zou M, Jiang H, Ji Z, Gao P, Cheng G. Synthesis of a novel kind of carbon nanoparticle with large mesopores and macropores and its application as an oral vaccine adjuvant. European Journal of Pharmaceutical Sciences, 2011, 44(5): 653–659
|
57 |
Glück R, Moser C, Metcalfe I C. Influenza virosomes as an efficient system for adjuvanted vaccine delivery. Expert Opinion on Biological Therapy, 2004, 4(7): 1139–1145
|
58 |
Zhu F C, Zhang J, Zhang X F, Zhou C, Wang Z Z, Huang S J, Wang H, Yang C L, Jiang H M, Cai J P, et al. Efficacy and safety of a recombinant hepatitise vaccine in healthy adults: A large-scale, randomised, double-blind placebo-controlled, phase 3 trial. Lancet, 2010, 376(9744): 895–902
|
59 |
Sliepen K, Ozorowski G, Burger J A, van Montfort T, Stunnenberg M, LaBranche C, Montefiori D C, Moore J P, Ward A B, Sanders R W. Presenting native-like HIV-1 envelope trimers on ferritin nanoparticles improves their immunogenicity. Retrovirology, 2015, 12(82): 15–21
|
60 |
Champion C I, Kickhoefer V A, Liu G, Moniz R J, Freed A S, Bergmann L L, Vaccari D, Raval-Fernandes S, Chan A M, Rome L H, Kelly K A. A vault nanoparticle vaccine induces protective mucosal immunity. PLoS One, 2009, 4(4): e5409
|
61 |
Kanekiyo M, Wei C J, Yassine H M, McTamney P M, Boyington J C, Whittle J R, Rao S S, Kong W P, Wang L, Nabel G J. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature, 2013, 499(7456): 102–106
|
62 |
Cho K J, Shin H J, Lee J H, Kim K J, Park S S, Lee Y, Lee C, Park S S, Kim K H. The crystal structure of ferritin from helicobacter pylori reveals unusual conformational changes for iron uptake. Journal of Molecular Biology, 2009, 390(1): 83–98
|
63 |
Steinman R M. Decisions about dendritic cells: Past, present, and future. Annual Review of Immunology, 2012, 30(1): 1–22
|
64 |
Gilboa E. DC-based cancer vaccines. Journal of Clinical Investigation, 2007, 117(5): 1195–1203
|
65 |
Aarntzen E, Figdor C, Adema G, Punt C, De Vries I. Dendritic cell vaccination and immune monitoring. Cancer Immunology, Immunotherapy, 2008, 57(10): 1559–1568
|
66 |
Han J A, Kang Y J, Shin C, Ra J S, Shin H H, Hong S Y, Do Y, Kang S. Ferritin protein cage nanoparticles as versatile antigen delivery nanoplatforms for dendritic cell (DC)-based vaccine development. Nanomedicine; Nanotechnology, Biology, and Medicine, 2013, 10(3): 561–569
|
67 |
Shimonkevitz R, Colon S, Kappler J W, Marrack P, Grey H M. Antigen recognition by H-2-restricted T cells. II. A tryptic ovalbumin peptide that substitutes for processed antigen. Journal of Immunology (Baltimore, MD: 1950), 1984, 133(4): 2067–2074
|
68 |
Liu D, Wang Z, Jin A, Huang X, Sun X, Wang F, Yan Q, Ge S, Xia N, Niu G, Liu G, Hight Walker A R, Chen X. Acetylcholinesterase—catalyzed hydrolysis allows ultrasensitive detection of pathogens with the naked eye. Angewandte Chemie International Edition in English, 2013, 52(52): 14065–14069
|
69 |
Lee S H, Lee H, Park J S, Choi H, Han K Y, Seo H S, Ahn K Y, Han S S, Cho Y, Lee K H, et al. A novel approach to ultrasensitive diagnosis using supramolecular protein nanoparticles. FASEB Journal, 2007, 21(7): 1324–1334
|
70 |
Abbaspour A, Noori A. Electrochemical detection of individual single nucleotide polymorphisms using monobase-modified apoferritin-encapsulated nanoparticles. Biosensors & Bioelectronics, 2012, 37(1): 11–18
|
71 |
Tang Z, Wu H, Zhang Y, Li Z, Lin Y. Enzyme-mimic activity of ferric nano-core residing in ferritin and its biosensing applications. Analytical Chemistry, 2011, 83(22): 8611–8616
|
72 |
Men D, Zhang T T, Hou L W, Zhou J, Zhang Z P, Shi Y Y, Zhang J L, Cui Z Q, Deng J Y, Wang D B, et al. Self-assembly of ferritin nanoparticles into an enzyme nanocomposite with tunable size for ultrasensitive immunoassay. ACS Nano, 2015, 9(11): 10852–10860
|
73 |
Liu G, Wang J, Wu H, Lin Y. Versatile apoferritin nanoparticle labels for assay of protein. Analytical Chemistry, 2006, 78(21): 7417–7423
|
74 |
Liu G, Wu H, Wang J, Lin Y. Apoferritin-templated synthesis of metal phosphate nanoparticle labels for electrochemical immunoassay. Small, 2006, 2(10): 1139–1143
|
75 |
Beutler B, Cerami A. Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature, 1986, 320(6063): 584–588
|
76 |
Scuderi P, Lam K, Ryan K, Petersen E, Sterling K, Finley P, Ray C G, Slymen D, Salmon S. Raised serum levels of tumour necrosis factor in parasitic infections. Lancet, 1986, 328(8520): 1364–1365
|
77 |
Yu F, Li G, Qu B, Cao W. Electrochemical detection of DNA hybridization based on signal DNA probe modified with Au and apoferritin nanoparticles. Biosensors & Bioelectronics, 2010, 26(3): 1114–1117
|
78 |
Li L, Fang C J, Ryan J C, Niemi E C, Lebrón J A, Björkman P J, Arase H, Torti F M, Torti S V, Nakamura M C, et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(8): 3505–3510
|
79 |
Fan K, Cao C, Pan Y, Lu D, Yang D, Feng J, Song L, Liang M, Yan X. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nature Nanotechnology, 2012, 7(7): 459–464
|
80 |
Lee E J, Ahn K Y, Lee J H, Park J S, Song J A, Sim S J, Lee E B, Cha Y J, Lee J. A novel bioassay platform using ferritin-based nanoprobe hydrogel. Advanced Materials, 2012, 24(35): 4739–4744
|
81 |
Zhao J, Liu M, Zhang Y, Li H, Lin Y, Yao S. Apoferritin protein nanoparticles dually-labeled with aptamer and HRP as a sensing probe for thrombin detection. Analytica Chimica Acta, 2012, 1(759): 53–60
|
82 |
John A, Tuszynski G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathology Oncology Research, 2001, 7(1): 14–23
|
83 |
Stetler-Stevenson W G, Aznavoorian S, Liotta L A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annual Review of Cell Biology, 1993, 9(1): 541–573
|
84 |
Malemud C J. Matrix metalloproteinases (MMPs) in health and disease: An overview. Frontiers in Bioscience: A Journal and Virtual Library, 2006, 11: 1696
|
85 |
Lin X, Xie J, Zhu L, Lee S, Niu G, Ma Y, Kim K, Chen X. Hybrid ferritin nanoparticles as activatable probes for tumor imaging. Angewandte Chemie International Edition in English, 2011, 50(7): 1569–1572
|
86 |
Zhu L, Ma Y, Kiesewetter D O, Wang Y, Lang L, Lee S, Niu G, Chen X. Rational design of matrix metalloproteinase-13 activatable probes for enhanced specificity. ACS Chemical Biology, 2013, 9(2): 510–516
|
87 |
Zhu L, Xie J, Swierczewska M, Zhang F, Quan Q, Ma Y, Fang X, Kim K, Lee S, Chen X. Real-time video imaging of protease expression in vivo. Theranostics, 2011, 1: 18–27
|
88 |
Wang J, Zhang L, Chen M, Gao S, Zhu L. Activatable ferritin nanocomplex for real-time monitoring of caspase-3 activation during photodynamic therapy. ACS Applied Materials & Interfaces, 2015, 7(41): 23248–23256
|
89 |
Choi S H, Na H B, Park Y I, An K, Kwon S G, Jang Y, Park M H, Moon J, Son J S, Song I C, et al. Simple and generalized synthesis of oxide-metal heterostructured nanoparticles and their applications in multimodal biomedical probes. Journal of the American Chemical Society, 2008, 130(46): 15573–15580
|
90 |
Wang H, Cao F, De A, Cao Y, Contag C, Gambhir S S, Wu J C, Chen X. Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells (Dayton, OH), 2009, 27(7): 1548–1558
|
91 |
Xu C, Yuan Z, Kohler N, Kim J, Chung M A, Sun S. Fept nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition. Journal of the American Chemical Society, 2009, 131(42): 15346–15351
|
92 |
Bhirde A, Xie J, Swierczewska M, Chen X. Nanoparticles for cell labeling. Nanoscale, 2011, 3(1): 142–153
|
93 |
Terashima M, Uchida M, Kosuge H, Tsao P S, Young M J, Conolly S M, Douglas T, McConnell M V. Human ferritin cages for imaging vascular macrophages. Biomaterials, 2011, 32(5): 1430–1437
|
94 |
Mills P H, Ahrens E T. Theoretical MRI contrast model for exogenous T2 agents. Magnetic Resonance in Medicine, 2007, 57(2): 442–447
|
95 |
Charlton J R, Pearl V M, Denotti A R, Lee J B, Swaminathan S, Scindia Y M, Charlton N P, Baldelomar E J, Beeman S C, Bennett K M. Biocompatibility of ferritin-based nanoparticles as targeted mri contrast agents. Nanomedicine; Nanotechnology, Biology, and Medicine, 2016, 12(6): 1735–1745
|
96 |
Domínguez-Vera J M, Fernandez B, Galvez N. Native and synthetic ferritins for nanobiomedical applications: Recent advances and new perspectives. Future Medicinal Chemistry, 2010, 2(4): 609–618
|
97 |
Maraloiu V A, Appaix F, Broisat A, Le Guellec D, Teodorescu V S, Ghezzi C, van der Sanden B, Blanchin M G. Multiscale investigation of uspio nanoparticles in atherosclerotic plaques and their catabolism and storage in vivo. Nanomedicine; Nanotechnology, Biology, and Medicine, 2016, 12(1): 191–200
|
98 |
Xie H, Cheng Y C, Kokeny P, Liu S, Hsieh C Y, Haacke E M, Palihawadana Arachchige M, Lawes G. A quantitative study of susceptibility and additional frequency shift of three common materials in MRI. Magnetic Resonance in Medicine, 2016, 76(4): 1263–1269
|
99 |
Choi S H, Cho H R, Kim H S, Kim Y H, Kang K W, Kim H, Moon W K. Imaging and quantification of metastatic melanoma cells in lymph nodes with a ferritin MR reporter in living mice. NMR in Biomedicine, 2012, 25(5): 737–745
|
100 |
Fan K, Gao L, Yan X. Human ferritin for tumor detection and therapy. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 2013, 5(4): 287–298
|
101 |
Schenck J F, Zimmerman E A. High-field magnetic resonance imaging of brain iron: Birth of a biomarker? NMR in Biomedicine, 2004, 17(7): 433–445
|
102 |
Christoforidis A, Haritandi A, Tsitouridis I, Tsatra I, Tsantali H, Karyda S, Dimitriadis A S, Athanassiou-Metaxa M. Correlative study of iron accumulation in liver, myocardium, and pituitary assessed with MRI in young thalassemic patients. Journal of Pediatric Hematology/Oncology, 2006, 28(5): 311–315
|
103 |
Bartzokis G, Cummings J L, Markham C H, Marmarelis P Z, Treciokas L J, Tishler T A, Marder S R, Mintz J. MRI evaluation of brain iron in earlier-and later-onset Parkinson’s disease and normal subjects. Magnetic Resonance Imaging, 1999, 17(2): 213–222
|
104 |
Bartzokis G, Tishler T. MRI evaluation of basal ganglia ferritin iron and neurotoxicity in Alzheimer’s and Huntingon’s disease. Cellular and Molecular Biology, 2000, 46(4): 821–833
|
105 |
Bennett K M, Zhou H, Sumner J P, Dodd S J, Bouraoud N, Doi K, Star R A, Koretsky A P. MRI of the basement membrane using charged nanoparticles as contrast agents. Magnetic Resonance in Medicine, 2008, 60(3): 564–574
|
106 |
Kim J W, Choi S H, Lillehei P T, Chu S H, King G C, Watt G D. Cobalt oxide hollow nanoparticles derived by bio-templating. Chemical Communications, 2005, (32): 4101–4103
|
107 |
Deng Q Y, Yang B, Wang J F, Whiteley C G, Wang X N. Biological synthesis of platinum nanoparticles with apoferritin. Biotechnology Letters, 2009, 31(10): 1505–1509
|
108 |
Sun C, Yang H, Yuan Y, Tian X, Wang L, Guo Y, Xu L, Lei J, Gao N, Anderson G J, et al. Controlling assembly of paired gold clusters within apoferritin nanoreactor for in vivo kidney targeting and biomedical imaging. Journal of the American Chemical Society, 2011, 133(22): 8617–8624
|
109 |
Uchida M, Terashima M, Cunningham C H, Suzuki Y, Willits D A, Willis A F, Yang P C, Tsao P S, McConnell M V, Young M J, et al. A human ferritin iron oxide nano-composite magnetic resonance contrast agent. Magnetic Resonance in Medicine, 2008, 60(5): 1073–1081
|
110 |
Jezierska A, Motyl T. Matrix metalloproteinase-2 involvement in breast cancer progression: A mini-review. Medical Science Monitor, 2009, 15(2): RA32–40
|
111 |
Ravanti L, Kähäri V. Matrix metalloproteinases in wound repair. International Journal of Molecular Medicine, 2000, 6(4): 391–798
|
112 |
Matsumura S, Aoki I, Saga T, Shiba K. A tumor-environment-responsive nanocarrier that evolves its surface properties upon sensing matrix metalloproteinase-2 and initiates agglomeration to enhance t(2) relaxivity for magnetic resonance imaging. Molecular Pharmaceutics, 2011, 8(5): 1970–1974
|
113 |
Makino A, Harada H, Okada T, Kimura H, Amano H, Saji H, Hiraoka M, Kimura S. Effective encapsulation of a new cationic gadolinium chelate into apoferritin and its evaluation as an MRI contrast agent. Nanomedicine; Nanotechnology, Biology, and Medicine, 2011, 7(5): 638–646
|
114 |
Sanchez P, Valero E, Galvez N, Dominguez-Vera J M, Marinone M, Poletti G, Corti M, Lascialfari A. MRI relaxation properties of water-soluble apoferritin-encapsulated gadolinium oxide-hydroxide nanoparticles. Dalton Transactions (Cambridge, England), 2009, (5): 800–804
|
115 |
Lee S, Chen X. Dual-modality probes for in vivo molecular imaging. Molecular Imaging, 2009, 8(2): 87–100
|
116 |
Cai W, Chen X. Multimodality molecular imaging of tumor angiogenesis. Journal of Nuclear Medicine, 2008, 49(Suppl 2): 113S–128S
|
117 |
Cai W, Niu G, Chen X. Multimodality imaging of the HER-kinase axis in cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35(1): 186–208
|
118 |
Wang Z, Huang P, Jacobson O, Wang Z, Liu Y, Lin L, Lin J, Lu N, Zhang H, Tian R, et al. Biomineralization-inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics. ACS Nano, 2016, 10(3): 3453–3460
|
119 |
Xu G, Zhao L, He Z. Performance of whole-body pet/ct for the detection of distant malignancies in various cancers: A systematic review and meta-analysis. Journal of Nuclear Medicine, 2012, 53(12): 1847–1854
|
120 |
Ford E C, Herman J, Yorke E, Wahl R L. 18F-FDG PET/CT for image-guided and intensity-modulated radiotherapy. Journal of Nuclear Medicine, 2009, 50(10): 1655–1665
|
121 |
Vach W, Hoilund-Carlsen P F, Gerke O, Weber W A. Generating evidence for clinical benefit of PET/CT in diagnosing cancer patients. Journal of Nuclear Medicine, 2011, 52(Suppl 2): 77S–85S
|
122 |
Cai W, Sam Gambhir S, Chen X. Multimodality tumor imaging targeting integrin alphavbeta3. BioTechniques, 2005, 39(6 Suppl): S14–S25
|
123 |
Vikram D S, Zweier J L, Kuppusamy P. Methods for noninvasive imaging of tissue hypoxia. Antioxidants & Redox Signaling, 2007, 9(10): 1745–1756
|
124 |
Huang P, Lin J, Li W, Rong P, Wang Z, Wang S, Wang X, Sun X, Aronova M, Niu G, et al. Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angewandte Chemie International Edition, 2013, 52(52): 13958–13964
|
125 |
Yang M, Fan Q, Zhang R, Cheng K, Yan J, Pan D, Ma X, Lu A, Cheng Z. Dragon fruit-like biocage as an iron trapping nanoplatform for high efficiency targeted cancer multimodality imaging. Biomaterials, 2015, 69: 30–37
|
126 |
Vannucci L, Falvo E, Failla C M, Carbo M, Fornara M, Canese R, Cecchetti S, Rajsiglova L, Stakheev D, Krizan J, et al. In vivo targeting of cutaneous melanoma using an melanoma stimulating hormone-engineered human protein cage with fluorophore and magnetic resonance imaging tracers. Journal of Biomedical Nanotechnology, 2015, 11(1): 81–92
|
127 |
Liang M, Fan K, Zhou M, Duan D, Zheng J, Yang D, Feng J, Yan X. H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(41): 14900–14905
|
/
〈 | 〉 |