RESEARCH ARTICLE

A comparison of the catalytic hydrogenation of 2-amylanthraquinone and 2-ethylanthraquinone over a Pd/Al 2O3 catalyst

  • Enxian Yuan 1 ,
  • Xiangwei Ren 3 ,
  • Li Wang , 1,2 ,
  • Wentao Zhao 3
Expand
  • 1. Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • 2. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
  • 3. School of Science, Tianjin University, Tianjin 300072, China

Received date: 18 Jul 2016

Accepted date: 27 Aug 2016

Published date: 12 May 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The hydrogenation of 2-ethylanthraquinone (eAQ), 2-tert-amylanthraquinone (taAQ) and their mixtures with molar ratios of 1:1 and 1:2 to the corresponding hydroquinones (eAQH2 and taAQH2) were studied over a Pd/Al2O3 catalyst in a semi-batch slurry reactor at 60 °C and at 0.3 MPa. Compared to eAQ, TaAQ exhibited a significantly slower hydrogenation rate (about half) but had a higher maximum yield of H2O2 and a smaller amount of degradation products. This can be ascribed to the longer and branched side chain in taAQ, which limits its accessibility to the Pd surface and its diffusion through the pores of the catalyst. Density functional theory calculations showed that it is more difficult for taAQ to adsorb onto a Pd (111) surface than for eAQ. The hydrogenation of the eAQ/taAQ mixtures had the slowest rates, lowest H2O2yields and the highest amounts of degradation products.

Cite this article

Enxian Yuan , Xiangwei Ren , Li Wang , Wentao Zhao . A comparison of the catalytic hydrogenation of 2-amylanthraquinone and 2-ethylanthraquinone over a Pd/Al 2O3 catalyst[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(2) : 177 -184 . DOI: 10.1007/s11705-016-1604-0

Acknowledgements

This work is supported by financial support from the National Natural Science Foundation of China (Grant No. 21676184).
1
Hong R, Feng  J, He Y ,  Li D. Controllable preparation and catalytic performance of Pd/anodic alumina oxide@Al catalyst for hydrogenation of ethylanthraquinone. Chemical Engineering Science, 2015, 135: 274–284

DOI

2
Fan S, Yi  J, Wang L ,  Mi Z. Direct synthesis of hydrogen peroxide from H2/O2 using Pd/Al2O3 catalysts. Reaction Kinetics and Catalysis Letters, 2007, 92(1): 175–182

DOI

3
Okninski A, Bartkowiak  B, Sobczak K ,  Kublik D ,  Surmacz P ,  Rarata G ,  Marciniak B ,  Wolanski P . 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2014

4
Wang Q, Wang  L, Wang Y ,  He F, Li  Z, Mi Z . Study on deactivation and regeneration of Pd/Al2O3 catalyst in hydrogen peroxide production by the anthraquinone process. Reaction Kinetics and Catalysis Letters, 2004, 81(2): 297–304

DOI

5
Liu G, Duan  Y, Wang Y ,  Wang L, Mi  Z. Periodically operated trickle-bed reactor for EAQs hydrogenation: Experiments and modeling. Chemical Engineering Science, 2005, 60(22): 6270–6278

DOI

6
Sandelin F, Oinas  P, Salmi T ,  Paloniemi J ,  Haario H . Kinetics of the recovery of active anthraquinones. Industrial & Engineering Chemistry Research, 2006, 45(3): 986–992

DOI

7
Sandelin F, Oinas  P, Salmi T ,  Paloniemi J ,  Haario H . Dynamic modelling of catalytic liquid-phase reactions in fixed beds—kinetics and catalyst deactivation in the recovery of anthraquinones. Chemical Engineering Science, 2006, 61(14): 4528–4539

DOI

8
Drelinkiewicz A. Deep hydrogenation of 2-ethylanthraquinone over Pd/SiO2 catalyst in the liquid phase. Journal of Molecular Catalysis A Chemical, 1992, 75(3): 321–332

DOI

9
Drelinkiewicz A, Waksmundzka-Góra  A. Investigation of 2-ethylanthraquinone degradation on palladium catalysts. Journal of Molecular Catalysis A Chemical, 2006, 246(1-2): 167–175

DOI

10
Li J, Yao  H, Wang Y ,  Luo G. One-step preparation of Pd-SiO2 composite microspheres by the sol-gel process in a microchannel. Industrial & Engineering Chemistry Research, 2014, 53(26): 10660–10666

DOI

11
Shen C, Wang  Y, Xu J ,  Lu Y, Luo  G. Preparation and the hydrogenation performance of a novel catalyst-Pd nanoparticles loaded on glass beads with an egg-shell structure. Chemical Engineering Journal, 2011, 173(1): 226–232

DOI

12
Feng J, Wang  H, Evans D G ,  Duan X, Li  D. Catalytic hydrogenation of ethylanthraquinone over highly dispersed eggshell Pd/SiO2-Al2O3 spherical catalysts. Applied Catalysis A, General, 2010, 382(2): 240–245

DOI

13
Tang P, Chai  Y, Feng J ,  Feng Y, Li  Y, Li D . Highly dispersed Pd catalyst for anthraquinone hydrogenation supported on alumina derived from a pseudoboehmite precursor. Applied Catalysis A, General, 2014, 469: 312–319

DOI

14
Chen H, Huang  D, Su X ,  Huang J ,  Jing X, Du  M, Sun D ,  Jia L, Li  Q. Fabrication of Pd/γ-Al2O3 catalysts for hydrogenation of 2-ethyl-9,10-anthraquinone assisted by plant-mediated strategy. Chemical Engineering Journal, 2015, 262: 356–363

DOI

15
Shang H, Zhou  H, Zhu Z ,  Zhang W . Study on the new hydrogenation catalyst and processes for hydrogen peroxide through anthraquinone route. Journal of Industrial and Engineering Chemistry, 2012, 18(5): 1851–1857

DOI

16
Santacesaria E, Serio  M D, Russo  A, Leone U ,  Velotti R . Kinetic and catalytic aspects in the hydrogen peroxide production via anthraquinone. Chemical Engineering Science, 1999, 54(13-14): 2799–2806

DOI

17
Tan J, Zhang  J, Lu Y ,  Xu J, Luo  G. Process intensification of catalytic hydrogenation of ethylanthraquinone with gas-liquid microdispersion. AIChE Journal. American Institute of Chemical Engineers, 2012, 58(5): 1326–1335

DOI

18
Santacesaria E, Serio  M D, Velotti  R, Leone U . Hydrogenation of the aromatic rings of 2-ethylanthraquinone on palladium catalyst. Journal of Molecular Catalysis A Chemical, 1994, 94(1): 37–46

DOI

19
Kosydar R, Drelinkiewicz  A, Ganhy J P . Degradation reactions in anthraquinone process of hydrogen peroxide synthesis. Catalysis Letters, 2010, 139(3-4): 105–113

DOI

20
Drelinkiewicz A. Kinetic aspects in the selectivity of deep hydrogenation of 2-ethylanthraquinone over Pd/SiO2. Journal of Molecular Catalysis A Chemical, 1995, 101(1): 61–74

DOI

21
Petr J, Kurc  L, Bělohlav Z ,  Červený L . Catalytic hydrogenation of 2-ethyl-9,10-anthrahydroquinone. Chemical Engineering and Processing: Process Intensification, 2004, 43(7): 887–894 

DOI

22
Jia X, Yang  Y, Liu G ,  Pan Z. Solubility of 2-tert-butylanthraquinone in binary solvents. Fluid Phase Equilibria, 2014, 376: 165–171

DOI

23
Li X, Su  H, Ren G ,  Wang S. Effect of metal dispersion on the hydrogenation of 2-amyl anthraquinone over Pd/Al2O3 catalyst. Journal of the Brazilian Chemical Society, 2016, 27(6): 1060–1066

24
Yuan E, Wu  C, Liu G ,  Wang L. One-pot synthesis of Pd nanoparticles on ordered mesoporous Al2O3 for catalytic hydrogenation of 2-ethyl-anthraquinone. Applied Catalysis A, General, 2016, 525: 119–127

DOI

25
Liu D, Zhang  J, Li D ,  Kong Q, Zhang  T, Wang S . Hydrogenation of 2-ethylanthraquinone under Taylor flow in single square channel monolith reactors. AIChE Journal. American Institute of Chemical Engineers, 2009, 55(3): 726–736

DOI

26
Berglin T, Schoeoen  N H. Kinetic and mass transfer aspects of the hydrogenation stage of the anthraquinone process for hydrogen peroxide production. Industrial & Engineering Chemistry Process Design and Development, 1981, 20(4): 615–621

DOI

27
Fajt V, Kurc  L, Červený L. The effect of solvents on the rate of catalytic hydrogenation of 6-ethyl-1,2,3,4-tetrahydroanthracene-9,10-dione. International Journal of Chemical Kinetics, 2008, 40(5): 240–252

DOI

28
Drelinkiewicz A, Laitinen  R, Kangas R ,  Pursiainen J . 2-Ethylanthraquinone hydrogenation on Pd/Al2O3. Applied Catalysis A, General, 2005, 284(1-2): 59–67

DOI

29
Santacesaria E, Serio  M D, Velotti  R, Leone U . Kinetics, mass transfer, and palladium catalyst deactivation in the hydrogenation step of the hydrogen peroxide synthesis via anthraquinone. Industrial & Engineering Chemistry Research, 1994, 33(2): 277–284

DOI

30
Li Y, Feng  J, He Y ,  Evans D G ,  Li D. Controllable synthesis, structure, and catalytic activity of highly dispersed Pd catalyst supported on whisker-modified spherical alumina. Industrial & Engineering Chemistry Research, 2012, 51(34): 11083–11090

DOI

Outlines

/