RESEARCH ARTICLE

Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch

  • Shaojie Wang ,
  • Zhihong Ma ,
  • Ting Zhang ,
  • Meidan Bao ,
  • Haijia Su
Expand
  • Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China

Received date: 17 Jul 2016

Accepted date: 22 Sep 2016

Published date: 17 Mar 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The production of bio-hydrogen from raw cassava starch via a mixed-culture dark fermentation process was investigated. The production yield of H2 was optimized by adjusting the substrate concentration and the microorganism mixture ratio. A maximum H2 yield of 1.72 mol H2/mol glucose was obtained with a cassava starch concentration of 10 g/L to give a 90% utilization rate. The kinetics of the substrate utilization and of the generation of both hydrogen and volatile fatty acids were also investigated. The substrate utilization follows pseudo first order reaction kinetics, whereas the production of both H2 and the VFAs correlate with the Gompertz equation. These results show that cassava is a good candidate for the production of biohydrogen.

Cite this article

Shaojie Wang , Zhihong Ma , Ting Zhang , Meidan Bao , Haijia Su . Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(1) : 100 -106 . DOI: 10.1007/s11705-017-1617-3

Acknowledgements

The authors express their thanks for the support from the National Natural Science Foundation of China (Grant No. 21525625), the National Basic Research Program of China (973 Program, Grant No. 2014CB745100), the National High Technology Research and Development Program of China (863 Program, Grant No. 2013AA020302).
1
Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chemical Society Reviews, 2014, 43(15): 5234–5244

DOI

2
Jiang S P, Shen P K, Sun A X, Sun S, Qiao J. Preface to the special section on “International Conference on Electrochemical Energy Science and Technology (EEST2014), 31 October–4 November 2014, Shanghai, China”. International Journal of Hydrogen Energy, 2015, 40(41): 14271

DOI

3
Chen C Y, Yang M H, Yeh K L, Chang J S. Biohydrogen production using sequential two-stage dark and photo fermentation processes. International Journal of Hydrogen Energy, 2008, 33(18): 4755–4762

DOI

4
Gadhamshetty V, Sukumaran A, Nirmalakhandan N, Theinmyint M. Photofermentation of malate for biohydrogen production—a modeling approach. International Journal of Hydrogen Energy, 2008, 33(9): 2138–2146

DOI

5
Lin C Y, Jo C H. Hydrogen production from sucrose using an anaerobic sequencing batch reactor process. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2003, 78(6): 678–684

DOI

6
Sreethawong T, Chatsiriwatana S, Rangsunvigit P, Chavadej S. Hydrogen production from cassava wastewater using an anaerobic sequencing batch reactor: Effects of operational parameters, COD: N ratio, and organic acid composition. International Journal of Hydrogen Energy, 2010, 35(9): 4092–4102

DOI

7
Wang S, Zhang T, Su H. Enhanced hydrogen production from corn starch wastewater as nitrogen source by mixed cultures. Renewable Energy, 2016, 96: 1135–1141

DOI

8
Kapdan I K, Kargi F. Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 2006, 38(5): 569–582

DOI

9
Manish S, Banerjee R. Comparison of biohydrogen production processes. International Journal of Hydrogen Energy, 2008, 33(1): 279–286

DOI

10
Meherkotay S, Das D. Biohydrogen as a renewable energy resource—prospects and potentials. International Journal of Hydrogen Energy, 2008, 33(1): 258–263

DOI

11
Angenent L T, Wrenn B A. Optimizing mixed-culture bioprocessing to convert wastes into bionergy. Bioenergy, 2008, 179–194

12
Sydney E B, Larroche C, Novak A C, Nouaille R, Sarma S J, Brar S K, Letti L A J, Soccol V T, Soccol C R. Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source. Bioresource Technology, 2014, 159(6): 380–386

DOI

13
Wei Z, Zhang Y, Du B, Dong W, Qin W, Zhao Y. Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria. Bioresource Technology, 2013, 142(8): 240–245

14
Ghimire A, Sposito F, Frunzo L, Lens P N, Pirozzi F, Esposito G. Improved dark fermentative hydrogen yields from complex waste biomass using mixed anaerobic cultures. Proceedings of the Water Environment Federation, 2015, 2(2): 1

DOI

15
Argun H, Kargi F. Bio-hydrogen production from ground wheat starch by continuous combined fermentation using annular-hybrid bioreactor. International Journal of Hydrogen Energy, 2010, 35(12): 6170–6178

DOI

16
Bao M, Su H, Tan T. Biohydrogen production by dark fermentation of starch using mixed bacterial cultures of bacillus sp. and brevumdimonas sp. Energy & Fuels, 2012, 26(9): 5872–5878

DOI

17
Hu B, Chen S. Pretreatment of methanogenic granules for immobilized hydrogen fermentation. International Journal of Hydrogen Energy, 2007, 32(15): 3266–3273

DOI

18
Mu Y, Yu H Q, Wang G. Evaluation of three methods for enriching H2-producing cultures from anaerobic sludge. Enzyme and Microbial Technology, 2007, 40(4): 947–953

DOI

19
Chaganti S R, Kim D H, Lalman J A, Shewa W A. Statistical optimization of factors affecting biohydrogen production from xylose fermentation using inhibited mixed anaerobic cultures. International Journal of Hydrogen Energy, 2012, 37(16): 11710–11718

DOI

20
Masset J, Calusinska M, Hamilton C, Joris B, Wilmotte A, Thonart P. Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium spp. Biotechnology for Biofuels, 2012, 5(1): 1

DOI

21
Chen W, Wu F, Zhang J. Potential production of non-food biofuels in China. Renewable Energy, 2016, 85: 939–944

DOI

22
Baeyens J, Kang Q, Appels L, Dewil R, Lv Y, Tan T. Challenges and opportunities in improving the production of bio-ethanol. Progress in Energy and Combustion Science, 2015, 47: 60–88

DOI

23
Luo X. Strategies for developing cassava industry in Guangxi. Zhongguo Nongxue Tongbao, 2004, 20(6): 376–379

24
Li Z, Huang Z, Yang Z, Chen D. The harmful factors and countermeasure influencing development of cassava fuel-alcohol industry. Renewable Energy Resources, 2008, 26(3): 106–110

25
Hu Z, Fang F, Ben D F, Pu G, Wang C. Net energy, CO2 emission, and life-cycle cost assessment of cassava-based ethanol as an alternative automotive fuel in (the) PRC. Applied Energy, 2004, 78(3): 247–256

DOI

26
Hu Z, Tan P, Pu G. Multi-objective optimization of cassava-based fuel ethanol used as an alternative automotive fuel in Guangxi, China. Applied Energy, 2006, 83(8): 819–840

DOI

27
Zhang T, Bao M D, Wang Y, Su H J, Tan T W. Genome sequence of Bacillus cereus strain A1, an efficient starch-utilizing producer of hydrogen. Genome Announcements, 2014, 2(3): e00494–e14

DOI

28
Zhang T, Bao M D, Wang Y, Su H J, Tan T W. Genome sequence of a promising hydrogen-producing facultative anaerobic bacterium, Brevundimonas naejangsanensis strain B1. Genome Announcements, 2014, 2(3): e00542–e14

29
Bao M D, Su H J, Tan T W. Dark fermentative bio-hydrogen production: Effects of substrate pre-treatment and addition of metal ions or L-cysteine. Fuel, 2013, 112: 38–44

DOI

30
Wang J, Wan W. Factors influencing fermentative hydrogen production: A review. International Journal of Hydrogen Energy, 2009, 34(2): 799–811

DOI

31
Ginkel S V, Sung S, Lay J J. Biohydrogen production as a function of pH and substrate concentration. Environmental Science & Technology, 2001, 35(24): 4726–4730

DOI

32
de Amorim E L C, Sader L T, Silva E L. Effect of substrate concentration on dark fermentation hydrogen production using an anaerobic fluidized bed reactor. Applied Biochemistry and Biotechnology, 2012, 166(5): 1248–1263

DOI

33
Chen W M, Tseng Z J, Lee K S, Chang J S. Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. International Journal of Hydrogen Energy, 2005, 30(10): 1063–1070

DOI

34
Ren N Q, Wang B Z, Ma F. A physiological ecology analysis of acidogenic fermentation of organic wastewater. China Biogas, 1995, 13(1): 1–6

35
Yokoi H, Tokushige T, Hirose J, Hayashi S, Takasaki Y H. H2production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnology Letters, 1998, 20(2): 143–147

DOI

36
Vatsala T M, Raj S M, Manimaran A. A pilot-scale study of biohydrogen production from distillery effluent using defined bacterial co-culture. International Journal of Hydrogen Energy, 2008, 33(20): 5404–5415

DOI

37
Argun H, Kargi F. Effects of sludge pre-treatment method on bio-hydrogen production by dark fermentation of waste ground wheat. International Journal of Hydrogen Energy, 2009, 34(20): 8543–8548

DOI

38
Appels L, Baeyens J, Degrève J, Dewil R. Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 2008, 34(6): 755–781

DOI

39
Hsiao C L, Chang J J, Wu J H, Chin W C, Wen F S, Huang C C, Chen C C, Lin C Y. Clostridium strain co-cultures for biohydrogen production enhancement from condensed molasses fermentation solubles. International Journal of Hydrogen Energy, 2009, 34(17): 7173–7181

DOI

40
Lee K S, Hsu Y F, Lo Y C, Lin P J, Lin C Y, Chang J S. Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora. International Journal of Hydrogen Energy, 2008, 33(5): 1565–1572

DOI

Outlines

/