REVIEW ARTICLE

Where physics meets chemistry: Thin film deposition from reactive plasmas

  • Andrew Michelmore , 1,2 ,
  • Jason D. Whittle 1 ,
  • James W. Bradley 3 ,
  • Robert D. Short , 2,4
Expand
  • 1. School of Engineering, University of South Australia, Mawson Lakes, Australia, SA 5095
  • 2. Future Industries Institute, University of South Australia, Mawson Lakes, Australia, SA 5095
  • 3. Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK
  • 4. Material Science Institute, Lancaster University, Lancaster, LA1 4YW, UK

Received date: 08 Jun 2016

Accepted date: 23 Sep 2016

Published date: 29 Nov 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Functionalising surfaces using polymeric thin films is an industrially important field. One technique for achieving nanoscale, controlled surface functionalization is plasma deposition. Plasma deposition has advantages over other surface engineering processes, including that it is solvent free, substrate and geometry independent, and the surface properties of the film can be designed by judicious choice of precursor and plasma conditions. Despite the utility of this method, the mechanisms of plasma polymer growth are generally unknown, and are usually described by chemical (i.e., radical) pathways. In this review, we aim to show that plasma physics drives the chemistry of the plasma phase, and surface-plasma interactions. For example, we show that ionic species can react in the plasma to form larger ions, and also arrive at surfaces with energies greater than 1000 kJ∙mol1 (>10 eV) and thus facilitate surface reactions that have not been taken into account previously. Thus, improving thin film deposition processes requires an understanding of both physical and chemical processes in plasma.

Cite this article

Andrew Michelmore , Jason D. Whittle , James W. Bradley , Robert D. Short . Where physics meets chemistry: Thin film deposition from reactive plasmas[J]. Frontiers of Chemical Science and Engineering, 2016 , 10(4) : 441 -458 . DOI: 10.1007/s11705-016-1598-7

1
Chatelier R C, Dai L, Griesser H J, Li S, Zientek P, Lohmann D, Chabrecek P U S. Patent, 6623747, <Date>2003-09-23</Date>

2
Moustafa M, Simpson C, Glover M, Dawson R A, Tesfaye S, Creagh F M, Haddow D, Short R, Heller S, MacNeil S. A new autologous keratinocyte dressing treatment for non-healing diabetic neuropathic foot ulcers. Diabetic Medicine, 2004, 21(7): 786–789

DOI

3
Yasuda H. Plasma Polymerization. New York: Academic Press, 1985

4
Kettle A, Beck A J, O’Toole L, Jones F, Short R. Plasma polymerisation for molecular engineering of carbon-fibre surfaces for optimised composites. Composites Science and Technology, 1997, 57(8): 1023–1032

DOI

5
Lopattananon N, Kettle A, Tripathi D, Beck A J, Duval E, France R M, Short R D, Jones F R. Interface molecular engineering of carbon-fibercomposites. Composites. Part A, Applied Science and Manufacturing, 1999, 30(1): 49–57

DOI

6
Beck A J, Jones F R, Short R D. Plasma copolymerization as a route to the fabrication of new surfaces with controlled amounts of specific chemical functionality. Polymer, 1996, 37(24): 5537–5539

DOI

7
Michelmore A, Whittle J D, Short R D, Boswell R W, Charles C. An Experimental and analytical study of an asymmetric capacitively coupled plasma used for plasma polymerization. Plasma Processes and Polymers, 2014, 11(9): 833–841

DOI

8
Suzuki K, Nakamura K, Ohkubo H, Sugai H. Power transfer efficiency and mode jump in an inductive RF discharge. Plasma Sources Science & Technology, 1998, 7(1): 13–20

DOI

9
Ward R J. Molecular engineering of surfaces by plasma copolymerization and enhanced cell attachment and spreading. Dissertation for the Doctoral Degree. UK: University of Durham, 1989

10
Beyer D, Knoll W, Ringsdorf H, Wang J H, Timmons R B, Sluka P. Reduced protein adsorption on plastics via direct plasma deposition of triethylene glycol monoallyl ether. Journal of Biomedical Materials Research. Part A, 1997, 36(2): 181–189

DOI

11
Padron-Wells G, Estrada-Raygoza I C, Thamban P L S, Nelson C T, Chung C W, Overzet L J, Goeckner M J. Understanding the synthesis of ethylene glycol pulsed plasma discharges. Plasma Processes and Polymers, 2013, 10(2): 119–135

DOI

12
Chen R T, Muir B W, Thomsen L, Tadich A, Cowie B C C, Such G K, Postma A, McLean K M, Caruso F. New insights into the substrate plasma polymer interface. Journal of Physical Chemistry B, 2011, 115(20): 6495–6502

DOI

13
Daw R, O’Leary T, Kelly J, Short R D, Cambray-Deakin M, Devlin A J, Brook I M, Scutt A, Kothari S. Molecular engineering of surfaces by plasma copolymerization and enhanced cell attachment and spreading. Plasmas and Polymers, 1999, 4(2-3): 113–132

DOI

14
Daw R, Candan S, Beck A, Devlin A, Brook I, MacNeil S, Dawson D A, Short R D. Plasma copolymer surfaces of acrylic acid/1,7-octadiene: Surface characterisation and the attachment of ROS 17/2.8-osteoblast-like cells. Biomaterials, 1998, 19(19): 1717–1725

DOI

15
Michelmore A, Steele D A, Robinson D E, Whittle J D, Short R D. The link between mechanisms of deposition and the physico-chemical properties of plasma polymer films. Soft Matter, 2013, 9(26): 6167–6175

DOI

16
Whittle J D, Short R D, Douglas C, Davies J. Differences in the aging of allyl alcohol, acrylic acid, allylamine, and octa-1,7-diene plasma polymers as studied by X-ray photoelectron spectroscopy. Chemistry of Materials, 2000, 12(9): 2664–2671

DOI

17
Gengenbach T R, Chatelier R C, Griesser H J. Characterization of the ageing of plasma-deposited polymer films: Global analysis of x-ray photoelectron spectroscopy data. Surface and Interface Analysis, 1996, 24(4): 271–281

DOI

18
Haddow D B, Steele D, Short R D, Dawson R A, Macneil S. Plasma–polymerized surfaces for culture of human keratinocytes and transfer of cells to an in vitro wound–bed model. Journal of Biomedical Materials Research. Part A, 2003, 64A(1): 80–87

DOI

19
Padron-Wells G, Jarvis B C, Jindal A K, Goeckner M J. Understanding the synthesis of DEGVE pulsed plasmas for application to ultra thin biocompatible interfaces. Colloids and Surfaces. B, Biointerfaces, 2009, 68(2): 163–170

DOI

20
Michelmore A, Bryant P M, Steele D A, Vasilev K, Bradley J W, Short R D. Role of positive ions in determining the deposition rate and film chemistry of continuous wave hexamethyldisiloxane plasmas. Langmuir, 2011, 27(19): 11943–11950

DOI

21
Michelmore A, Gross-Kosche P, Al-Bataineh S A, Whittle J D, Short R D. On the effect of monomer chemistry on growth mechanisms of nonfouling PEG-like plasma polymers. Langmuir, 2013, 29(8): 2595–2601

DOI

22
Choukourov A, Biederman H, Slavinska D, Hanley L, Grinevich A, Boldryeva H, Mackova A. Mechanistic studies of plasma polymerization of allylamine. Journal of Physical Chemistry B, 2005, 109(48): 23086–23091

DOI

23
Michelmore A, Charles C, Boswell R W, Short R D, Whittle J D. Defining plasma polymerization: New insight into what we should be measuring. ACS Applied Materials & Interfaces, 2013, 5(12): 5387–5391

DOI

24
Daunton C, Smith L E, Whittle J D, Short R D, Steele D A, Michelmore A. Plasma parameter aspects in the fabrication of stable amine functionalized plasma polymer films. Plasma Processes and Polymers, 2015, 12(8): 817–826

DOI

25
Saboohi S, Jasieniak M, Coad B R, Griesser H J, Short R D, Michelmore A. Comparison of plasma polymerization under collisional and collision-less pressure regimes. Journal of Physical Chemistry B, 2015, 119(49): 15359–15369

DOI

26
Zhang Z H, Liu S L, Shi Y, Dou J, Fang S M. DNA detection and cell adhesion on plasma-polymerized pyrrole. Biopolymers, 2014, 101(5): 496–503

DOI

27
Wang L, Liu X J, Hao J, Chu L Q. Long-range surface plasmon resonance sensors fabricated with plasma polymerized fluorocarbon thin films. Sensors and Actuators. B, Chemical, 2015, 215: 368–372

DOI

28
Jiang Z, Jiang Z J. Plasma techniques for the fabrication of polymer electrolyte membranes for fuel cells. Journal of Membrane Science, 2014, 456: 85–106

DOI

29
Hua J, Zhanga C, Jiangb L, Fanga S, Zhanga X, Wanga X, Menga Y. Plasma graft-polymerization for synthesis of highly stable hydroxide exchange membrane. Journal of Power Sources, 2014, 248: 831–838

DOI

30
Zhao X Y, Wang M Z, Ji J Q, Wang T H, Yang F, Du J M. Structural analysis and dielectric property of novel conjugated polycyanurates. Polymer Engineering and Science, 2014, 54(4): 812–817

DOI

31
Li P H, Li L M, Wang W H, Jin W H, Liu X M, Yeung K W K, Chu P K. Enhanced corrosion resistance and hemocompatibility of biomedical NiTi alloy by atmospheric-pressure plasma polymerized fluorine-rich coating. Applied Surface Science, 2014, 297: 109–115

DOI

32
Feng Y E, Liao X P, Wang Y N, Shi B. Improvement in leather surface hydrophobicity through low-pressure cold plasma polymerization. Journal of the American Leather Chemistry Association, 2014, 109(3): 89–95

33
Yang Z L, Xiong K Q, Qi P K, Yang Y, Tu Q F, Wang J, Huang N. Gallic acid tailoring surface functionalities of plasma-polymerized allylamine-coated 316L SS to selectively direct vascular endothelial and smooth muscle cell fate for enhanced endothelialization. ACS Applied Materials & Interfaces, 2014, 6(4): 2647–2656

DOI

34
Li J W, Wu Z X, Huang C J, Liu H M, Huang R J, Li L F. Mechanical properties of cyanate ester/epoxy nanocomposites modified with plasma functionalized MWCNTs. Composites Science and Technology, 2014, 90: 166–173

DOI

35
Sun Y Y, Liang Q, Chi H J, Zhang Y J, Shi Y, Fang D N, Li F X. The Application of gas plasma technologies in surface modification of aramid fiber. Fibers and Polymers, 2014, 15(1): 1–7

DOI

36
Tian M, Yin Y, Yang C, Zhao B, Song J, Liu J, Li X M, He T. CF4 plasma modified highly interconnective porous polysulfone membranes for direct contact membrane distillation (DCMD). Desalination, 2015, 369: 105–114

DOI

37
Ma G Q, Liu Y, Wei S, Sheng J. Surface modification of polypropylene by ethylene plasma and its induced β-form in polypropylene. Chinese Journal of Polymer Science, 2015, 33(5): 669–673

DOI

38
Wan S J, Wang L, Xu X J, Zhao C H, Liu X D. Controllable surface morphology and properties via mist polymerization on a plasma-treated polymethyl methacrylate surface. Soft Matter, 2014, 10(6): 903–910

DOI

39
Zhang Z G, Zhang T Z, Li J S, Ji Z L, Zhou H M, Zhou X F, Gu N. Preparation of poly(<?A3B2 th=8pt?>L<?A3B2 th?>-lactic acid)-modified polypropylene mesh and its antiadhesion in experimental abdominal wall defect repair. Journal of Biomedical Materials Research Part B, 2014, 102(1): 12–21

DOI

40
Denaro A R, Owens P A, Crawshaw A. Glow discharge polymerization—styrene. European Polymer Journal, 1968, 4(1): 93–106

DOI

41
Westwood A R. Glow discharge polymerization—rates and mechanisms of polymer formation. European Polymer Journal, 1971, 7(4): 363–375

DOI

42
Michelmore A, Steele D A, Whittle J D, Bradley J W, Short R D. Nanoscale deposition of chemically functionalised films via plasma polymerisation. RSC Advances, 2013, 3(33): 13540–13557

DOI

43
Chabert P, Braithwaite N. Physics of Radio-Frequency Plasmas.Cambridge: Academic Press, 2011

44
Lieberman M A, Lichtenberg A J. Principles of Plasma Discharges and Materials Processing.Chichester: John Wiley and Sons, 1994

45
Hulburt E O. Atmospheric ionization by cosmic radiation. Physical Review, 1931, 37(1): 1–8

DOI

46
Blanksby S J, Ellison G B. Bond dissociation energies of organic molecules. Accounts of Chemical Research, 2003, 36(4): 255–263

DOI

47
Johnston E E, Beyers J D, Ratner B D. Plasma deposition and surface characterization of oligoglyme, dioxane, and crown ether nonfouling films. Langmuir, 2005, 21(3): 870–881

DOI

48
Menzies D J, Cowie B, Fong C, Forsythe J S, Gengenbach T R, McLean K M, Puskar L, Textor M, Thomsen L, Tobin M, Muir B W. One-step method for generating PEG-Like plasma polymer gradients: Chemical characterization and analysis of protein interactions. Langmuir, 2010, 26(17): 13987–13994

DOI

49
Flory P J. Principles of Polymer Chemistry. New York: Cornell University Press, 1953

50
Agarwal S, Quax G W W, van de Senden M C M, Maroudas D, Aydil E S. Measurement of absolute radical densities in a plasma using modulated-beam line-of-sight threshold ionization mass spectrometry. Journal of Vacuum Science and Technology Part A, 2004, 22(1): 71–81

DOI

51
Booth J P, Corr C S, Curley G A, Jolly J, Guillon J, Földes T. Fluorine negative ion density measurement in a dual frequency capacitive plasma etch reactor by cavity ring-down spectroscopy. Applied Physics Letters, 2006, 88(15): 151502

DOI

52
Whittle J D, Short R D, Steele D A, Bradley J W, Bryant P M, Jan F, Biederman H, Serov A A, Choukurov A, Hook A L, Ciridon W A, Ceccone G, Hegemann D, Korner E, Michelmore A. Variability in plasma polymerization processes—an international round-robin study. Plasma Processes and Polymers, 2013, 10(9): 767–778

DOI

53
Williams T, Hayes M W. Polymerization in a glow discharge. Nature, 1966, 209(5025): 769–773

DOI

54
Chapman B. Glow Discharge Processes.Chichester: John Wiley and Sons, 1980

55
Doyle J R. Chemical kinetics in low pressure acetylene radio frequency glow discharges. Journal of Applied Physics, 1997, 82(10): 4763–4771

DOI

56
O’Toole L, Mayhew C A, Short R D. On the plasma polymerisation of allyl alcohol: An investigation of ion-molecule reactions using a selected ion flow tube. Journal of the Chemical Society, Faraday Transactions, 1997, 93(10): 1961–1964

DOI

57
Stoykov S, Eggs C, Kortshagen U. Plasma chemistry and growth of nanosized particles in a C2H2 RF discharge. Journal of Physics. D, Applied Physics, 2001, 34(14): 2160–2173

DOI

58
Oh J S, Bradley J W. Heavy ion formation in plasma jet polymerization of heptylamine at atmospheric pressure. Plasma Processes and Polymers, 2013, 10(10): 839–842

59
O’Toole L, Short R D, Ameen A P, Jones F R. Mass spectrometry of and deposition-rate measurements from radiofrequency-induced plasmas of methyl isobutyrate, methyl methacrylate and n-butyl methacrylate. Journal of the Chemical Society, Faraday Transactions, 1995, 91(9): 1363–1370

DOI

60
Bohm D. Minimum ionic kinetic energy for a stable sheath. In: Guthrie A,Wakerling R K, eds. The Characteristics of Electrical Discharges in Magnetic Fields. London: McGrawHill, 1949, 77–86

61
Vender D, Boswell R W. Numerical modeling of low-pressure RF plasma. IEEE Transactions on Plasma Science, 1990, 18(4): 725–732

DOI

62
Jacobs D C. Reactive collisions of hyperthermal energy molecular ions with solid surfaces. Annual Review of Physical Chemistry, 2002, 53(1): 379–407

DOI

63
Titus M J, Nest D, Graves D B. Absolute vacuum ultraviolet flux in inductively coupled plasmas and chemical modifications of 193 nm photoresist. Applied Physics Letters, 2009, 94(17): 171501

DOI

64
Truica-Marasescu F, Wertheimer M R. Vacuum-ultraviolet photopolymerisation of amine-rich thin films. Macromolecular Chemistry and Physics, 2008, 209(10): 1043–1049

DOI

65
Barton D, Bradley J W, Gibson K J, Steele D A, Short R D. An in situ comparison between VUV photon and ion energy fluxes to polymer surfaces immersed in an RF plasma. Journal of Physical Chemistry B, 2000, 104(30): 7150–7153

DOI

66
Haller I, White P. Polymerization of butadiene gas on surfaces under low energy electron bombardment. Journal of Physical Chemistry, 1963, 67(9): 1784–1788

DOI

67
Peter S, Graupner K, Grambole D, Richter F. Comparative experimental analysis of the a-C:H deposition processes using CH4 and C2H2 as precursors. Journal of Applied Physics, 2007, 102(5): 053304

DOI

68
Shen M, Bell A T. A review of recent advances in plasma polymerization. In: Plasma Polymerization. ACS Symposium Series. Washington, DC: American Chemical Society, 1979, 1–33

69
Friedrich J. Plasma processes and polymers, mechanisms of plasma polymerization—reviewed from a chemical point of view. Plasma Processes and Polymers, 2011, 8(9): 783–802

DOI

70
Milella A, Palumbo F, Favia P, Cicala G, d’Agostino R. Continuous and modulated deposition of fluorocarbon films from c-C4F8 plasmas. Plasma Processes and Polymers, 2004, 1(2): 164–170

DOI

71
Hegemann D, Hanselmann B, Blanchard N, Amberg M. Plasma-substrate interaction during plasma deposition on polymers. Contributions to Plasma Physics, 2014, 54(2): 162–169

DOI

72
Thiry D, Konstantinidis S, Cornil J, Snyders R. Plasma diagnostics for the low-pressure plasma polymerization process: A critical review. Thin Solid Films, 2016, 606: 19–44

DOI

73
Ershov S, Khelifa F, Lemaur V, Cornil J, Cossement D, Habibi Y, Dubois P, Snyders R. Free radical generation and concentration in a plasma polymer: The effect of aromaticity. ACS Applied Materials & Interfaces, 2014, 6(15): 12395–12405

DOI

74
VonKeudell A, Schwartz-Selinger T, Meier M, Jacob W. Direct identification of the synergism between methyl radicals and atomic hydrogen during growth of amorphous hydrogenated carbon films. Applied Physics Letters, 2000, 76(6): 676–678

DOI

75
McNaught A D, Wilkinson A. IUPAC Compendium of Chemical Terminology, 2nd ed.Oxford: Blackwell Scientific Publications, 1997

76
O’Toole L, Beck A J, Ameen A P, Jones F R, Short R D. Radiofrequency-induced plasma polymerisation of propenoic acid and propanoic acid. Journal of the Chemical Society, Faraday Transactions, 1995, 91(21): 3907–3912

DOI

77
Brookes P N, Fraser S, Short R D, Hanley L, Fuoco E, Roberts A, Hutton S J. The effect of ion energy on the chemistry of air-aged polymer films grown from the hyperthermal polyatomic ion Si2OMe+5. Electron Spectroscopy and Related Phenomena, 2001, 121(1-3): 281–297

DOI

78
Beck A J, Candan S, Short R D, Goodyear A, Braithwaite N, St J. The role of ions in the plasma polymerization of allylamine. Journal of Physical Chemistry B, 2001, 105(24): 5730–5736

DOI

79
Michelmore A, Whittle J D, Short R D. The importance of ions in low pressure PECVD plasmas. Frontiers in Physics, 2015, 3: 3

DOI

80
von Keudell A. Surface processes during thin-film growth. Plasma Sources Science & Technology, 2000, 9(4): 455–467

DOI

81
Khelifa F, Ershov S, Habibi Y, Snyders R, Dubois P. Free-radical-induced grafting from plasma polymer surfaces. Chemical Reviews, 2016, 116(6): 3975–4005

DOI

82
Coad B R, Styan K E, Meagher L. One step ATRP initiator immobilization on surfaces leading to gradient-grafted polymer brushes. ACS Applied Materials & Interfaces, 2014, 6(10): 7782–7789

DOI

83
Blanchard N E, Hanselmann B, Drosten J, Heunberger M, Hegemann D. Densification and hydration of HMDSO plasma polymers. Plasma Processes and Polymers, 2015, 12(1): 32–41

DOI

84
Ryssy J, Prioste-Amaral E, Assuncao D F N, Rogers N, Kirby G T S, Smith L E, Michelmore A. Chemical and physical processes in the retention of functional groups in plasma polymers studied by plasma phase mass spectroscopy. Physical Chemistry Chemical Physics, 2016, 18(6): 4496–4504

DOI

85
Hopp I, Michelmore A, Smith L E, Robinson D E, Bachhuka A, Mierczynska A, Vasilev K. The influence of substrate stiffness gradients on primary human dermal fibroblasts. Biomaterials, 2013, 34(21): 5070–5077

DOI

86
Memming R, Tolle H J, Wierenga P E. Properties of polymeric layers of hydrogenated amorphous carbon produced by a plasma-activated chemical vapour deposition process II: Tribological and mechanical properties. Thin Solid Films, 1986, 143(1): 31–41

DOI

87
Pappas D L, Hopwood J. Deposition of diamondlike carbon using a planar radio frequency induction plasma. Journal of Vacuum Science and Technology Part A, 1994, 12(4): 1576–1582

DOI

Outlines

/