Frontiers of Chemical Science and Engineering >
Thin-film composite forward osmosis membranes with substrate layer composed of polysulfone blended with PEG or polysulfone grafted PEG methyl ether methacrylate
Received date: 01 Mar 2016
Accepted date: 18 Jun 2016
Published date: 29 Nov 2016
Copyright
To advance commercial application of forward osmosis (FO), we investigated the effects of two additives on the performance of polysulfone (PSf) based FO membranes: one is poly(ethylene glycol) (PEG), and another is PSf grafted with PEG methyl ether methacrylate (PSf-g-PEGMA). PSf blended with PEG or PSf-g-PEGMA was used to form a substrate layer, and then polyamide was formed on a support layer by interfacial polymerization. In this study, NaCl (1 mol∙L−1) and deionized water were used as the draw solution and the feed solution, respectively. With the increase of PEG content from 0 to 15 wt-%, FO water flux declined by 23.4% to 59.3% compared to a PSf TFC FO membrane. With the increase of PSf-g-PEGMA from 0 to 15 wt-%, the membrane flux showed almost no change at first and then declined by about 52.0% and 50.4%. The PSf with 5 wt-% PSf-g-PEGMA FO membrane showed a higher pure water flux of 8.74 L∙m−2∙h−1 than the commercial HTI membranes (6–8 L∙m−2∙h−1) under the FO mode. Our study suggests that hydrophobic interface is very important for the formation of polyamide, and a small amount of PSf-g-PEGMA can maintain a good condition for the formation of polyamide and reduce internal concentration polarization.
Baicang Liu , Chen Chen , Pingju Zhao , Tong Li , Caihong Liu , Qingyuan Wang , Yongsheng Chen , John Crittenden . Thin-film composite forward osmosis membranes with substrate layer composed of polysulfone blended with PEG or polysulfone grafted PEG methyl ether methacrylate[J]. Frontiers of Chemical Science and Engineering, 2016 , 10(4) : 562 -574 . DOI: 10.1007/s11705-016-1588-9
1 |
Cath T Y, Childress A E, Elimelech M. Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 2006, 281(1-2): 70–87
|
2 |
Lee S, Boo C, Elimelech M, Hong S. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). Journal of Membrane Science, 2010, 365(1-2): 34–39
|
3 |
Mi B, Elimelech M. Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. Journal of Membrane Science, 2010, 348(1-2): 337–345
|
4 |
Mi B, Elimelech M. Gypsum scaling and cleaning in forward osmosis: Measurements and mechanisms. Environmental Science & Technology, 2010, 44(6): 2022–2028
|
5 |
Mi B, Elimelech M. Silica scaling and scaling reversibility in forward osmosis. Desalination, 2013, 312: 75–81
|
6 |
Shaffer D L, Yip N Y, Gilron J, Elimelech M. Seawater desalination for agriculture by integrated forward and reverse osmosis: Improved product water quality for potentially less energy. Journal of Membrane Science, 2012, 415: 1–8
|
7 |
Su J, Chung T S, Helmer B J, de Wit J S. Enhanced double-skinned FO membranes with inner dense layer for wastewater treatment and macromolecule recycle using sucrose as draw solute. Journal of Membrane Science, 2012, 396: 92–100
|
8 |
Ge Q, Wang P, Wan C, Chung T S. Polyelectrolyte-promoted forward osmosis-membrane distillation (FO-MD) hybrid process for dye wastewater treatment. Environmental Science & Technology, 2012, 46(11): 6236–6243
|
9 |
Petrotos K B, Quantick P, Petropakis H. A study of the direct osmotic concentration of tomato juice in tubular membrane-module configuration. I. The effect of certain basic process parameters on the process performance. Journal of Membrane Science, 1998, 150(1): 99–110
|
10 |
Nayak C A, Rastogi N K. Forward osmosis for the concentration of anthocyanin from Garcinia indica Choisy. Separation and Purification Technology, 2010, 71(2): 144–151
|
11 |
She Q, Jin X, Tang C Y. Osmotic power production from salinity gradient resource by pressure retarded osmosis: Effects of operating conditions and reverse solute diffusion. Journal of Membrane Science, 2012, 401: 262–273
|
12 |
Chou S, Wang R, Shi L, She Q, Tang C, Fane A G. Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density. Journal of Membrane Science, 2012, 389: 25–33
|
13 |
Yip N Y, Tiraferri A, Phillip W A, Schiffrnan J D, Hoover L A, Kim Y C, Elimelech M. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Environmental Science & Technology, 2011, 45(10): 4360–4369
|
14 |
Yip N Y, Elimelech M. Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis. Environmental Science & Technology, 2011, 45(23): 10273–10282
|
15 |
Abdallah H, El-Gendi A, Khedr M, El-Zanati E. Hydrophobic polyethersulfone porous membranes for membrane distillation. Frontiers of Chemical Science and Engineering, 2015, 9(1): 84–93
|
16 |
Xie M, Nghiem L D, Price W E, Elimelech M. A forward osmosis-membrane distillation hybrid process for direct sewer mining: System performance and limitations. Environmental Science & Technology, 2013, 47(23): 13486–13493
|
17 |
Phuntsho S, Shon H K, Hong S, Lee S, Vigneswaran S. A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: Evaluating the performance of fertilizer draw solutions. Journal of Membrane Science, 2011, 375(1-2): 172–181
|
18 |
Phuntsho S, Shon H K, Majeed T, El Saliby I, Vigneswaran S, Kandasamy J, Hong S, Lee S. Blended fertilizers as draw solutions for fertilizer-drawn forward osmosis desalination. Environmental Science & Technology, 2012, 46(8): 4567–4575
|
19 |
Sukitpaneenit P, Chung T S. High performance thin-film composite forward osmosis hollow fiber membranes with macrovoid-free and highly porous structure for sustainable water production. Environmental Science & Technology, 2012, 46(13): 7358–7365
|
20 |
Wang R, Shi L, Tang C Y, Chou S, Qiu C, Fane A G. Characterization of novel forward osmosis hollow fiber membranes. Journal of Membrane Science, 2010, 355(1-2): 158–167
|
21 |
Zhao S, Zou L, Tang C Y, Mulcahy D. Recent developments in forward osmosis: Opportunities and challenges. Journal of Membrane Science, 2012, 396: 1–21
|
22 |
Tiraferri A, Yip N Y, Phillip W A, Schiffman J D, Elimelech M. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. Journal of Membrane Science, 2011, 367(1-2): 340–352
|
23 |
McCutcheon J R, Elimelech M. Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes. Journal of Membrane Science, 2008, 318(1-2): 458–466
|
24 |
Ghosh A K, Hoek E M V. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes. Journal of Membrane Science, 2009, 336(1-2): 140–148
|
25 |
Widjojo N, Chung T S, Weber M, Maletzko C, Warzelhan V. The role of sulphonated polymer and macrovoid-free structure in the support layer for thin-film composite (TFC) forward osmosis (FO) membranes. Journal of Membrane Science, 2011, 383(1-2): 214–223
|
26 |
Zhong P, Fu X, Chung T S, Weber M, Maletzko C. Development of thin-film composite forward osmosis hollow fiber membranes using direct sulfonated polyphenylenesulfone (sPPSU) as membrane substrates. Environmental Science & Technology, 2013, 47(13): 7430–7436
|
27 |
Chakrabarty B, Ghoshal A K, Purkait M K. Effect of molecular weight of PEG on membrane morphology and transport properties. Journal of Membrane Science, 2008, 309(1-2): 209–221
|
28 |
Liu B, Chen C, Li T, Crittenden J, Chen Y. High performance ultrafiltration membrane composed of PVDF blended with its derivative copolymer PVDF-g-PEGMA. Journal of Membrane Science, 2013, 445: 66–75
|
29 |
Nhu-Ngoc B, McCutcheon J R. Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis. Environmental Science & Technology, 2013, 47(3): 1761–1769
|
30 |
Park J Y, Acar M H, Akthakul A, Kuhlman W, Mayes A M. Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes. Biomaterials, 2006, 27(6): 856–865
|
31 |
Ghosh A K, Jeong B H, Huang X, Hoek E M V. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties. Journal of Membrane Science, 2008, 311(1-2): 34–45
|
32 |
Cadotte J E. Interfacially synthesized reverse osmosis membrane. US Patent, 4277344, 1981
|
33 |
Yip N Y, Tiraferri A, Phillip W A, Schiffman J D, Elimelech M. High performance thin-film composite forward osmosis membrane. Environmental Science & Technology, 2010, 44(10): 3812–3818
|
34 |
Phillip W A, Yong J S, Elimelech M. Reverse draw solute permeation in forward osmosis: Modeling and experiments. Environmental Science & Technology, 2010, 44(13): 5170–5176
|
35 |
Cath T Y, Elimelech M, McCutcheon J R, McGinnis R L, Achilli A, Anastasio D, Brady A R, Childress A E, Farr I V, Hancock N T, Lampi J, Nghiem L D, Xie M, Yip N Y. Standard methodology for evaluating membrane performance in osmotically driven membrane processes. Desalination, 2013, 312: 31–38
|
36 |
Boom R M, Wienk I M, Vandenboomgaard T, Smolders C A. Microstructures in phase inversion membranes. 2. The role of a polymeric additive. Journal of Membrane Science, 1992, 73(2-3): 277–292
|
37 |
Liu B, Chen C, Zhang W, Crittenden J, Chen Y. Low-cost antifouling PVC ultrafiltration membrane fabrication with Pluronic F 127: Effect of additives on properties and performance. Desalination, 2012, 307: 26–33
|
38 |
Wei J, Qiu C, Tang C Y, Wang R, Fane A G. Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes. Journal of Membrane Science, 2011, 372(1-2): 292–302
|
39 |
Huang L, McCutcheon J R. Impact of support layer pore size on performance of thin film composite membranes for forward osmosis. Journal of Membrane Science, 2015, 483: 25–33
|
40 |
Mi Y F, Zhao Q, Ji Y L, An Q F, Gao C J. A novel route for surface zwitterionic functionalization of polyamide nanofiltration membranes with improved performance. Journal of Membrane Science, 2015, 490: 311–320
|
/
〈 | 〉 |