Frontiers of Chemical Science and Engineering >
Cofactor engineering in cyanobacteria to overcome imbalance between NADPH and NADH: A mini review
Received date: 02 Jun 2016
Accepted date: 10 Jul 2016
Published date: 17 Mar 2017
Copyright
Cyanobacteria can produce useful renewable fuels and high-value chemicals using sunlight and atmospheric carbon dioxide by photosynthesis. Genetic manipulation has increased the variety of chemicals that cyanobacteria can produce. However, their uniquely abundant NADPH-pool, in other words insufficient supply of NADH, tends to limit their production yields in case of utilizing NADH-dependent enzyme, which is quite common in heterotrophic microbes. To overcome this cofactor imbalance and enhance cyanobacterial fuel and chemical production, various approaches for cofactor engineering have been employed. In this review, we focus on three approaches: (1) utilization of NADPH-dependent enzymes, (2) increasing NADH production, and (3) changing cofactor specificity of NADH-dependent enzymes from NADH to NADPH.
Jongmoon Park , Yunnam Choi . Cofactor engineering in cyanobacteria to overcome imbalance between NADPH and NADH: A mini review[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(1) : 66 -71 . DOI: 10.1007/s11705-016-1591-1
1 |
Parmar A, Singh N K, Pandey A, Gnansounou E, Madamwar D. Cyanobacteria and microalgae: A positive prospect for biofuels. Bioresource Technology, 2011, 102(22): 10163–10172
|
2 |
Machado I M, Atsumi S. Cyanobacterial biofuel production. Journal of Biotechnology, 2012, 162(1): 50–56
|
3 |
Nozzi N E, Oliver J W, Atsumi S. Cyanobacteria as a platform for biofuel production. Frontiers in Bioengineering and Biotechnology, 2013, 1: 1–6
|
4 |
Deng M D, Coleman J R. Ethanol synthesis by genetic engineering in cyanobacteria. Applied and Environmental Microbiology, 1999, 65(2): 523–528
|
5 |
Dexter J, Fu P. Metabolic engineering of cyanobacteria for ethanol production. Energy & Environmental Science, 2009, 2(8): 857–864
|
6 |
Gao Z, Zhao H, Li Z, Tan X, Lu X. Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy & Environmental Science, 2012, 5(12): 9857–9865
|
7 |
Choi Y N, Park J M. Enhancing biomass and ethanol production by increasing NADPH production in Synechocystis sp. PCC 6803. Bioresource Technology, 2016, 213: 54–57
|
8 |
Kusakabe T, Tatsuke T, Tsuruno K, Hirokawa Y, Atsumi S, Liao J C, Hanai T. Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metabolic Engineering, 2013, 20: 101–108
|
9 |
Lan E I, Liao J C. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metabolic Engineering, 2011, 13(4): 353–363
|
10 |
Lan E I, Liao J C. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6018–6023
|
11 |
Atsumi S, Higashide W, Liao J C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nature Biotechnology, 2009, 27(12): 1177–1180
|
12 |
Angermayr S A, Paszota M, Hellingwerf K J. Engineering a cyanobacterial cell factory for production of lactic acid. Applied and Environmental Microbiology, 2012, 78(19): 7098–7106
|
13 |
Varman A M, Yu Y, You L, Tang Y J. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium. Microbial Cell Factories, 2013, 12(1): 1–8
|
14 |
Zhou J, Zhang H, Meng H, Zhang Y, Li Y. Production of optically pure D-lactate from CO2 by blocking the PHB and acetate pathways and expressing D-lactate dehydrogenase in cyanobacterium Synechocystis sp. PCC 6803. Process Biochemistry, 2014, 49(12): 2071–2077
|
15 |
Angermayr S A, Van der Woude A D, Correddu D, Vreugdenhil A, Verrone V, Hellingwerf K J. Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803. Biotechnology for Biofuels, 2014, 7(1): 1–15
|
16 |
Li C, Tao F, Ni J, Wang Y, Yao F, Xu P. Enhancing the light-driven production of D-lactate by engineering cyanobacterium using a combinational strategy. Scientific Reports, 2015, 5: 1–11
|
17 |
Miyake M, Takase K, Narato M, Khatipov E, Schnackenberg J, Shirai M, Kurane R, Asada Y. Polyhydroxybutyrate production from carbon dioxide by cyanobacteria. Applied Biochemistry and Biotechnology, 2000, 84-86(1-9): 991–1002
|
18 |
Tyo K E, Jin Y S, Espinoza F A, Stephanopoulos G. Identification of gene disruptions for increased poly-3-hydroxybutyrate accumulation in Synechocystis PCC 6803. Biotechnology Progress, 2009, 25(5): 1236–1243
|
19 |
Zhou J, Zhu T, Cai Z, Li Y. From cyanochemicals to cyanofactories: A review and perspective. Microbial Cell Factories, 2016, 15(1): 1–9
|
20 |
Wang Y, San K Y, Bennett G N. Cofactor engineering for advancing chemical biotechnology. Current Opinion in Biotechnology, 2013, 24(6): 994–999, 99
|
21 |
Akhtar M K, Jones P R. Cofactor Engineering for enhancing the flux of metabolic pathways. Frontiers in Bioengineering and Biotechnology, 2014, 2: 1–6
|
22 |
Tamoi M, Miyazaki T, Fukamizo T, Shigeoka S. The calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditions. Plant Journal, 2005, 42(4): 504–513
|
23 |
Cooley J W, Vermaas W F. Succinate dehydrogenase and other respiratory pathways in thylakoid membranes of Synechocystis sp. strain PCC 6803: Capacity comparisons and physiological function. Journal of Bacteriology, 2001, 183(14): 4251–4258
|
24 |
Dempo Y, Ohta E, Nakayama Y, Bamba T, Fukusaki E. Molar-based targeted metabolic profiling of cyanobacterial strains with potential for biological production. Metabolites, 2014, 4(2): 499–516
|
25 |
Hirokawa Y, Maki Y, Tatsuke T, Hanai T. Cyanobacterial production of 1,3-propanediol directly from carbon dioxide using a synthetic metabolic pathway. Metabolic Engineering, 2016, 34: 97–103
|
26 |
Li H, Liao J C. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol. Microbial Cell Factories, 2013, 12(1): 1–9
|
27 |
Oliver J W, Machado I M, Yoneda H, Atsumi S. Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(4): 1249–1254
|
28 |
Savakis P E, Angermayr S A, Hellingwerf K J. Synthesis of 2,3-butanediol by Synechocystis sp. PCC 6803 via heterologous expression of a catabolic pathway from lactic acid-and enterobacteria. Metabolic Engineering, 2013, 20: 121–130
|
29 |
Niederholtmeyer H, Wolfstadter B T, Savage D F, Silver P A, Way J C. Engineering cyanobacteria to synthesize and export hydrophilic products. Applied and Environmental Microbiology, 2010, 76(11): 3462–3466
|
30 |
McNeely K, Xu Y, Bennette N, Bryant D A, Dismukes G C. Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Applied and Environmental Microbiology, 2010, 76(15): 5032–5038
|
31 |
Kumaraswamy G K, Guerra T, Qian X, Zhang S, Bryant D A, Dismukes G C. Reprogramming the glycolytic pathway for increased hydrogen production in cyanobacteria: Metabolic engineering of NAD+-dependent GAPDH. Energy & Environmental Science, 2013, 6(12): 3722–3731
|
32 |
Jarboe L R, Yqh D. A broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals. Applied Microbiology and Biotechnology, 2011, 89(2): 249–257
|
33 |
Wee Y J, Kim J N, Ryu H W. Biotechnological production of lactic acid and its recent applications. Food Technology and Biotechnology, 2006, 44(2): 163–172
|
34 |
Joseph A, Aikawa S, Sasaki K, Tsuge Y, Matsuda F, Tanaka T, Kondo A. Utilization of lactic acid bacterial genes in Synechocystis sp. PCC 6803 in the production of lactic acid. Bioscience, Biotechnology, and Biochemistry, 2013, 77(5): 966–970
|
35 |
Polizzi K M, Chaparro-Riggers J F, Vazquez-Figueroa E, Bommarius A S. Structure-guided consensus approach to create a more thermostable penicillin G acylase. Biotechnology Journal, 2006, 1(5): 531–536
|
36 |
Terao Y, Miyamoto K, Ohta H. Introduction of single mutation changes arylmalonate decarboxylase to racemase. Chemical Communications, 2006, 34(34): 3600–3602
|
37 |
Vázquez-Figueroa E, Chaparro-Riggers J, Bommarius A S. Development of a thermostable glucose dehydrogenase by a structure-guided consensus concept. ChemBioChem, 2007, 8(18): 2295–2301
|
38 |
Jochens H, Bornscheuer U T. Natural diversity to guide focused directed evolution. ChemBioChem, 2010, 11(13): 1861–1866
|
39 |
Ema T, Nakano Y, Yoshida D, Kamata S, Sakai T. Redesign of enzyme for improving catalytic activity and enantioselectivity toward poor substrates: Manipulation of the transition state. Organic & Biomolecular Chemistry, 2012, 10(31): 6299–6308
|
40 |
Holmberg N, Ryde U, Bulow L. Redesign of the coenzyme specificity in L-lactate dehydrogenase from bacillus stearothermophilus using site-directed mutagenesis and media engineering. Protein Engineering, Design & Selection, 1999, 12(10): 851–856
|
41 |
Ma C, Zhang L, Dai J, Xiu Z. Relaxing the coenzyme specificity of 1,3-propanediol oxidoreductase from Klebsiella pneumoniae by rational design. Journal of Biotechnology, 2010, 146(4): 173–178
|
42 |
Richter N, Zienert A, Hummel W. A single-point mutation enables lactate dehydrogenase from Bacillus subtilis to utilize NAD+ and NADP+ as cofactor. Engineering in Life Sciences, 2011, 11(1): 26–36
|
43 |
Meng H, Liu P, Sun H, Cai Z, Zhou J, Lin J, Li Y. Engineering a D-lactate dehydrogenase that can super-efficiently utilize NADPH and NADH as cofactors. Scientific Reports, 2016, 6: 1–8
|
44 |
Steiner K, Schwab H. Recent advances in rational approaches for enzyme engineering. Computational and Structural Biotechnology Journal, 2012, 2(3): 1–12
|
45 |
Li Y, Cirino P C. Recent advances in engineering proteins for biocatalysis. Biotechnology and Bioengineering, 2014, 111(7): 1273–1287
|
/
〈 | 〉 |