RESEARCH ARTICLE

Stability of Ni/SiO2-ZrO2 catalysts towards steaming and coking in the dry reforming of methane with carbon dioxide

  • Bettina Stolze 1 ,
  • Juliane Titus 1 ,
  • Stephan A. Schunk 2 ,
  • Andrian Milanov 3 ,
  • Ekkehard Schwab 3 ,
  • Roger Gläser , 1
Expand
  • 1. Institute of Chemical Technology, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
  • 2. hte GmbH, Kurpfalzring 104, 69123 Heidelberg, Germany
  • 3. BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany

Received date: 28 Dec 2015

Accepted date: 06 Mar 2016

Published date: 19 May 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Ni/SiO2-ZrO2 catalysts with Ni loadings of 1 to 13 wt-% were prepared, characterized by elemental analysis, X-ray diffraction, N2 sorption, temperature programmed oxidation, temperature programmed reduction, and tested for their activity and stability in the dry reforming of methane with carbon dioxide at 850 °C, gas hourly space velocity of 6000 and 1800 h–1 and atmospheric pressure. The SiO2-ZrO2 support as obtained through a simple and efficient sol-gel synthesis is highly porous (ABET = 90 m2·g–1, dP = 4.4 nm) with a homogeneously distributed Si-content of 3 wt-%. No loss of Si or formation of monoclinic ZrO2, even after steaming at 850 °C for 160 h, was detectable. The catalyst with 5 wt-% Ni loading in its fully reduced state is stable over 15 h on-stream in the dry reforming reaction. If the catalyst was not fully reduced, a reduction during the early stages of dry reforming is accompanied by the deposition of up to 44 mg·g–1carbon as shown by experiments in a magnetic suspension balance. Rapid coking occurs for increased residence times and times-on-stream starting at 50 h. The Ni loading of 5 wt-% on SiO2-ZrO2 was shown to provide an optimal balance between activity and coking tendency.

Cite this article

Bettina Stolze , Juliane Titus , Stephan A. Schunk , Andrian Milanov , Ekkehard Schwab , Roger Gläser . Stability of Ni/SiO2-ZrO2 catalysts towards steaming and coking in the dry reforming of methane with carbon dioxide[J]. Frontiers of Chemical Science and Engineering, 2016 , 10(2) : 281 -293 . DOI: 10.1007/s11705-016-1568-0

Acknowledgements

Financial support of this work by the German government (Bundesministerium für Wirtschaft und Technologie, Fördernummer 0320327856D) is gratefully acknowledged. Thanks are also due to Katja König, Institut für Nichtklassische Chemie e.V. at Unviersität Leipzig, for the experiments with the magnetic suspension balance, and to Dr. Gerald Wagner, Institute for Mineralogy, Crystallography and Material Science, Universität Leipzig, for the electron microscopy images.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11705-016-1568-0 and is accessible for authorized users.
1
Havran V, Dudukovic M P, Lo C S. Conversion of methane and carbon dioxide to higher value products. Industrial & Engineering Chemistry Research, 2011, 50(12): 7089–7100

DOI

2
York A P E, Xiao T, Green M L H, Claridge J B. Methane oxyforming for synthes is gas production. Catalysis Reviews, 2007, 49(4): 511–560

DOI

3
Wender I. Reactions of synthesis gas. Fuel Processing Technology, 1996, 48(3): 189–297

DOI

4
Wang S, Lu G Q, Millar G J. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: State of the art. Energy & Fuels, 1996, 10(4): 896–904

DOI

5
Rostrup-Nielsen J R, Sehested J, Norskov J K. Hydrogen and syntheis gas by steam and CO2 reforming. Advances in Catalysis, 2002, 47: 65–139

DOI

6
Kroll V C H, Swann H M, Mirodatos C. Methane reforming reaction with carbon dioxide over Ni/SiO2 catalyst. Journal of Catalysis, 1996, 161(1): 409–422

DOI

7
Pakhare D, Spivey J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chemical Society Reviews, 2014, 43(22): 7813–7837

DOI

8
Itkulova S S, Zhunusova K Z, Zakumbaeva G D. CO2 reforming of methane over Co-Pd/Al2O3 catalysts. Bulletin of the Korean Chemical Society, 2005, 26(12): 2017–2020

DOI

9
Bitter J H, Seshan K, Lercher J A. Mono and bifunctional pathways of CO2/CH4 reforming over Pt and Rh based catalysts. Journal of Catalysis, 1998, 176(1): 93–101

DOI

10
Swaan H M, Kroll V C H, Martin G A, Mirodatos C. Deactivation of supported nickel catalysts during the redorming of methane by carbon dioxide. Catalysis Today, 1994, 2(2-3): 571–578

DOI

11
Liu C J, Ye J, Jiang J, Pan Y. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane. ChemCatChem, 2011, 3(3): 529–541

DOI

12
Budiman A W, Song S H, Chang T S, Shin C H, Choi M J. Dry reforming of methane over cobalt catalysts: A literature review of catalyst developent. Catalysis Surveys from Asia, 2012, 16(4): 183–197

DOI

13
Benrabaa R, Löfberg A, Rubbens A, Bordes-Richard E, Vannier R N, Barama A. Structure, reactivity and catalytic properties of nanoparticles of nickel ferrite in the dry reforming of methane. Catalysis Today, 2013, 203: 188–195

DOI

14
Rostrup-Niesen J P. Catalytic Steam Reforming in Catalysis. In: Anderson J R, Boudart M, eds. Catalysis-Science & Technology. Berlin: Springer, 1984, 1–117

15
Sajjadi S M, Haghighi M, Eslami A A, Rahmani F. Hydrogen production via CO2-reforming of methane over Cu and Co doped Ni/Al2O3 nanocatalyst: Impregnation versus sol-gel method and effect of process conditions and promoter. Journal of Sol-Gel Science and Technology, 2013, 67(3): 601–617

DOI

16
Al-Fatesh A S, Naeem M A, Fakeeha A H, Abasaeed A E. CO2 reforming of methane to produce syngas over g-Al2O3-supported NiSr catalysts. Bulletin of the Chemical Society of Japan, 2013, 86(6): 742–748

DOI

17
Sutthiumporn K, Maneerung T, Kathiraser Y, Kawi S. CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M= Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on CeH activation and carbon suppression. International Journal of Hydrogen Energy, 2012, 37(15): 11195–11207

DOI

18
Han J W, Kim C, Park J S, Lee H. Highly coke-resistant Ni nanoparticle catalysts with minimal sintering in dry reforming of methane. ChemSusShem, 2014, 7: 7451–7456

19
Kang K M, Kim H W, Shim I W, Kwak H Y. Catalytic test of supported Ni catalysts with core/shell structure for dry reforming of methane. Fuel Processing Technology, 2011, 92(6): 1236–1243

DOI

20
Gardner T H, Spivey J J, Kugler E L, Pakhare D. CH4-CO2 reforming over Ni-substituted barium hexaaluminate catalysts. Applied Catalysis A, 2013, 455: 129–136

DOI

21
Roussiere T, Schelkle K M, Titlbach S, Wasserschaff G, Milanov A, Cox G, Schwab E, Deutschmann O, Schulz L, Jentys A, Lercher J A, Schunk S A. Structure-activity relationships of nickel-hexaaluminatesin reforming reactions. Part I: Controlling Nickel nanoparticle growth and phase formation. ChemCatChem, 2014, 6: 1438–1446

22
Roussiere T, Schelkle K M, Titlbach S, Wasserschaff G, Milanov A, Cox G, Schwab E, Deutschmann O, Schulz L, Jentys A, Lercher J A, Schunk S A. Structure-activity relationships of nickel-hexaaluminates in reforming reactions. Part II: Activity and stability of nanostructured nickel-hexaaluminate-based catalysts in the dry reforming of methane. ChemCatChem, 2014, 6: 1447–1452

23
Bhavani G A, Kim W Y, Lee J S. Barium substituted lanthanum manganite perovskite for CO2 reforming of methane. ACS Catalysis, 2013, 3(7): 1537–1544

DOI

24
Titus J, Roussière T, Wasserschaff G, Schunk S A, Milanov A, Schwab E, Wagner G, Oeckler O, Gläser R. Dry reforming of methane wth carbon dioxide over NiO-MgO-ZrO2. Catalysis Today, 2015, doi: 10.1016/j.cattod.2015.09.027

25
Frontera P, Macario A, Aloise A, Antonucci P L, Giordano G, Nagy J B. Effect of support surface on methane dry-reforming catalyst preparation. Catalysis Today, 2013, 218: 18–29

DOI

26
Rezaei M, Alavi S M, Sahebdelfar S, Liu X M, Qian L, Yan Z F. CO2-CH4 reforming over Nickel catalysts supported on mesoporous nanocrystalline zirconia with high surface area. Energy & Fuels, 2007, 21(2): 581–589

DOI

27
Liang B, Ding C. Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying. Surface and Coatings Technology, 2005, 197(2-3): 185–192

DOI

28
Shen R, Shafrir S N, Miao C, Wang M, Lambropoulos J C, Jacobs J D, Yang H. Synthesis and corrosion study of zirconia-coated carboyl iron particles. Journal of Colloid and Interface Science, 2010, 342(1): 49–56

DOI

29
Peters A, Nouzoori F, Richter D, Lutecki M, Gläser R. Nickel-loaded zirconia catalysts with large specific surface area for high-temperature catalytic applications. ChemCatChem, 2011, 3(3): 598–606

DOI

30
Rezaei M, Alavi S M, Sahebdelfar S, Bai R, Liu X M, Yan Z F. CO2 reforming of CH4 over nanocrystalline zirconia-supported nickel catalysts. Applied Catalysis B: Environmental, 2008, 77(3-4): 346–354

DOI

31
Cassiers K, Linssen T, Aerts K, Cool P, Lebedev O, Van Tendeloo G, Van Grieken R, Vansant E F. Controlled formation of amine-templated mesostructured zirconia with remarkably high thermal stability. Journal of Materials Chemistry, 2003, 13(12): 3033–3039

DOI

32
Ciesla U, Schacht S, Stucky D G, Unger K K, Schüth F. Formation of a porous zirconium oxo phosphate with a high surface area by a surfactant-assisted synthesis. Angewandte Chemie International Edition, 1996, 35(5): 541–543

DOI

33
Lutecki M, Solcova O, Werner S, Breitkopf C. Synthesis and characterization of nanostructured sulfated zirconias. Journal of Sol-Gel Science and Technology, 2010, 53(1): 13–20

DOI

34
Centi G, Cerrato G, D’Angelo S, Finardi U, Giamello E, Morterra C, Perathoner S. Catalytic behavior and nature of active sites in copper-on-zirconia catalysts for the decomposition of N2O. Catalysis Today, 1996, 27(1-2): 265–270

DOI

35
del Monte F, Larsen W, Mackenzie J D. Stabilization of tetragonal ZrO2 in ZrO2-SiO2 binary oxides. Journal of the American Ceramic Society, 2000, 83(3): 628–634

DOI

36
del Monte F, Larsen W, Mackenzie J D. Chemical interactions promoting the ZrO2 tetragonal stabilization in ZrO2-SiO2 binary oxides. Journal of the American Ceramic Society, 2000, 83(6): 1506–1512

DOI

37
Ho S M. On the structural chemistry of zirconium oxide. Matererials. Science and Engeniering, 1982, 54: 23–29

38
Chuah G K, Jaenicke S. The preparation of high surface area zirconia—influence of precipitating agent and digestion. Applied Catalysis A, 1997, 163(1-2): 261–273

DOI

39
Chuah G K, Jaenicke S, Cheong S A, Chan K S. The influence of preparation conditions on the surface area of zirconia. Applied Catalysis A, 1996, 145(1-2): 267–248

DOI

40
Chuah G K, Jaenicke S, Pong B K. The preparation of high-surface-area zirconia: II. Influence of precipitating agent and digestion on the morphology and microstructure of hydrous zirconia. Journal of Catalysis, 1998, 175(1): 80–92

DOI

41
Chuah G K, Liu H S, Jaenicke J, Li J. High surface area zirconia by digestion of zirconium propoxide at different pH. Microporous and Mesoporous Materials, 2000, 39(12): 381–392

DOI

42
Viinikainen T, Rönkkönen H, Bradshaw H, Stephenson H, Airaksinen S, Reinikainen M, Simell P, Krause O. Acidic and basic surface sites of zirconia-based biomass gasification gas clean-up catalysts. Applied Catalysis A, 2009, 362(1-2): 169–177

DOI

43
Liu D, Wang Y, Shi D, Jia X, Wang X, Borgna A, Lau R, Yang Y. Methane reforming with carbon dioxide over a Ni/ZiO2SiO2 catalyst: Influence of pretreatment gas atmospheres. International Journal of Hydrogen Energy, 2012, 37(13): 10135–10144

DOI

44
Putz H, Brandenburg K. Match!: Phase Identification from Powder Diffraction, Bonn, Crystal Impact 2003‒2012. http://crystalimpact.com/match/Default.htm

45
Rodriguez J A, Hanson J C, Frenkel A I, Kim J Y, Perez M. Experimental and theoretical studies on the reaction of H2 with NiO: Role of O vacancies and mechanism for oxide reduction. Journal of the American Chemical Society, 2002, 124(2): 346–354

DOI

46
Kahle L C S, Roussière T, Maier L, Herrera Delgado K, Wasserschaff G, Schunk S A, Deutschmann O. Methane dry reforming at high temperature and elevated pressure: Impact of gas-phase reactions. Industiral & Engeniering Chemistry Research, 2013, 52(34): 11920–11930

DOI

47
Guo J, Lou H, Zheng X M. The deposition of coke from methane on a Ni/MgAl2O4 catalyst. Carbon, 2007, 45(6): 1314–1321

DOI

48
Bychkov V Y, Tyulenin Y P, Firsova A A, Shafranovsky A E, Gorenberg A Y, Korchak V N. Carbonization of nickel catalysts and its effect on methane dry reforming. Applied Catalysis A, 2013, 453: 71–79

DOI

49
Pan W, Song C. Using tapered element oscillating microbalance for in situ monitoring of carbon deposition on nickel catalyst during CO2 reforming of methane. Catalysis Today, 2009, 148(3-4): 232–242

DOI

50
Pompeo F, Nichio N N, Souza M M, Cesar D V, Ferretti O A, Schmal M. Study of Ni and Pt catalysts supported on a-Al2O3 and ZrO2 applied in methane reforming with CO2. Applied Catalysis A, 2007, 316(2): 175–138

DOI

51
Stagg-Williams S M, Noronha F B, Fendley G, Resasco D E. CO2 reforming of CH4 over Pt/ZrO2 catalysts promoted with La and Ce oxides. Journal of Catalysis, 2000, 194(2): 240–249

DOI

52
Montoya J A, Romero-Pascual E, Gimon C, Del Angel P, Monzón A. Methane reforming with CO2 over Ni/ZrO2-CeO2 catalysts prepared by sol-gel. Catalysis Today, 2000, 63(1): 71–85

DOI

53
Gonzalez-Delacruz V M, Pereniguez R, Ternero F, Holgado J P, Caballero A. Modifying the size of nickel metallic particles by H2/CO treatment in Ni/ZrO2 methane dry reforming catalysts. ACS Catalysis, 2011, 1(2): 82–88

DOI

54
Pohling R. Chemische Reaktionen in der Wasseranalyse. Berlin: Springer-Verlag, 2015

55
San-José-Alonso D, Juan-Juan J, Illán-Gómez M J, Román-Martínez M C. Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane. Applied Catalysis A, 2009, 371(1-2): 54–59

DOI

56
Zhou L, Li L, Wei N, Li J, Basset J M. Effect of NiAl2O4 formation on Ni/Al2O3 stability during dry reforming of methane. ChemCatChem, 2015, 7(16): 2508–2516

DOI

57
Fan M S, Abdullah A Z, Bhatia S. Utilization of greenhouse gases through carbon dioxide reforming of methane over Ni-Co/MgO-ZrO2: Preparation, characterization and activity studies. Applied Catalysis B: Environmental, 2010, 100(1-2): 365–377

DOI

58
Cai W, Ye L, Zhang L, Ren Y, Yue B, Chen X, He H. Highly dispersed Nickel-containing mesoporous silica with superior stability in carbon dioxide reforming of methane: The effect of anchoring. Materials (Basel), 2014, 7(3): 2340–2355

DOI

Outlines

/