REVIEW ARTICLE

Ribozyme and the mechanisms that underlie RNA catalysis

  • Timothy J. Wilson ,
  • Yijin Liu ,
  • David M. J. Lilley
Expand
  • Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee DD1 5EH, UK

Received date: 02 Dec 2015

Accepted date: 02 Jan 2016

Published date: 19 May 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Ribozymes are widespread, and catalyze some extremely important reactions in the cell. Mechanistically most fall into one of two classes, using either metal ions or general acid-base catalysis. The nucleolytic ribozymes fall into the latter class, mostly using nucleobases. A sub-set of these use a combination of guanine base plus adenine acid to catalyze the cleavage reaction. New ribozymes are still being discovered at regular intervals and we can speculate on the potential existence of ribozymes that catalyze chemistry beyond phosphoryl transfer reactions, perhaps using small-molecule coenzymes.

Cite this article

Timothy J. Wilson , Yijin Liu , David M. J. Lilley . Ribozyme and the mechanisms that underlie RNA catalysis[J]. Frontiers of Chemical Science and Engineering, 2016 , 10(2) : 178 -185 . DOI: 10.1007/s11705-016-1558-2

Acknowledgements

We thank our colleagues and collaborators for many discussions of RNA catalysis, and Cancer Research UK for funding the research of this laboratory.
1
Noller H F, Hoffarth V, Zimniak L. Unusual resistance of peptidyl transferase to protein extraction procedures. Science, 1992, 256: 1416–1419

2
Nissen P, Hansen J, Ba N, Moore P B, Steitz T A. The structural basis of ribosome activity in peptide bond synthesis. Science, 2000, 289: 920–930

3
Weinger J S, Parnell K M, Dorner S, Green R, Strobel S A. Substrate-assisted catalysis of peptide bond formation by the ribosome. Nature Structural & Molecular Biology, 2004, 11: 1101–1106

4
Kingery D A, Pfund E, Voorhees R M, Okuda K, Wohlgemuth I, Kitchen D E, Rodnina M V, Strobel S A. An uncharged amine in the transition state of the ribosomal peptidyl transfer reaction. Chemistry & Biology, 2008, 15: 493–500

5
Fica S M, Tuttle N, Novak T, Li N S, Lu J, Koodathingal P, Dai Q, Staley J P, Piccirilli J A. RNA catalyses nuclear pre-mRNA splicing. Nature, 2013, 503: 229–234

6
Keating K S, Toor N, Perlman P S, Pyle A M. A structural analysis of the group II intron active site and implications for the spliceosome. RNA (New York, N.Y.), 2010, 16: 1–9

7
Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell, 1983, 35: 849–857

8
Kikovska E, Svard S G, Kirsebom L A. Eukaryotic RNase P RNA mediates cleavage in the absence of protein. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104: 2062–2067

9
Przybilski R, Graf S, Lescoute A, Nellen W, Westhof E, Steger G, Hammann C. Functional hammerhead ribozymes naturally encoded in the genome of Arabidopsis thaliana. Plant Cell, 2005, 17: 1877–1885

10
Seehafer C, Kalweit A, Steger G, Graf S, Hammann C. From alpaca to zebrafish: Hammerhead ribozymes wherever you look. RNA (New York, N.Y.), 2011, 17: 21–26

11
Salehi-Ashtiani K, Luptak A, Litovchick A, Szostak J W. A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. Science, 2006, 313: 1788–1792

12
Webb C H, Riccitelli N J, Ruminski D J, Luptak A. Widespread occurrence of self-cleaving ribozymes. Science, 2009, 326: 953

13
Roth A, Weinberg Z, Chen A G, Kim P B, Ames T D, Breaker R R. A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nature Chemical Biology, 2014, 10: 56–60

14
Weinberg Z, Kim P B, Chen T H, Li S, Harris K A, Lunse C E, Breaker R R. New classes of self-cleaving ribozymes revealed by comparative genomics analysis. Nature Chemical Biology, 2015, 11: 606–610

15
Lilley D M, Sutherland J. The chemical origins of life and its early evolution: An introduction. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2011, 366: 2853–2856

16
Crick F H C. The origin of the genetic code. Journal of Molecular Biology, 1968, 38: 367–379

17
Orgel L E. RNA catalysis and the origin of life. Journal of Theoretical Biology, 1986, 123: 127–149

18
Wilson T J, Lilley D M J. The evolution of ribozyme chemistry. Science, 2009, 323: 1436–1438

19
Adams P L, Stahley M R, Wang J, Strobel S A. Crystal structure of a self-splicing group I intron with both exons. Nature, 2004, 430: 45–50

20
Marcia M, Pyle A M. Visualizing group II intron catalysis through the stages of splicing. Cell, 2012, 151: 497–507

21
Steitz T A, Steitz J A. A general 2-metal-ion mechanism for catalytic RNA. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90: 6498–6502

22
Shan S, Kravchuk A V, Piccirilli J A, Herschlag D. Defining the catalytic metal ion interactions in the Tetrahymena ribozyme reaction. Biochemistry, 2001, 40: 5161–5171

23
Hougland J L, Kravchuk A V, Herschlag D, Piccirilli J A. Functional identification of catalytic metal ion binding sites within RNA. PLoS Biology, 2005, 3: e277

24
Frederiksen J K, Li N S, Das R, Herschlag D, Piccirilli J A. Metal-ion rescue revisited: Biochemical detection of site-bound metal ions important for RNA folding. RNA (New York, N.Y.), 2012, 18: 1123–1141

25
Golden B L, Gooding A R, Podell E, Cech T R. A preorganised active site in the crystal structure of the Tetrahymena ribozyme. Science, 1998, 282: 259–264

26
Stahley M R, Strobel S A. Structural evidence for a two-metal-ion mechanism of group I intron splicing. Science, 2005, 309: 1587–1590

27
Golden B L, Kim H D, Chase E. Crystal structure of a phage Twort group I ribozyme-product complex. Nature Structural & Molecular Biology, 2005, 12: 82–89

28
Toor N, Keating K S, Taylor S D, Pyle A M. Crystal structure of a self-spliced group II intron. Science, 2008, 320: 77–82

29
Gordon P M, Sontheimer E J, Piccirilli J A. Metal ion catalysis during the exon-ligation step of nuclear pre-mRNA splicing: Extending the parallels between the spliceosome and group II introns. RNA (New York, N.Y.), 2000, 6: 199–205

30
Huppler A, Nikstad L J, Allmann A M, Brow D A, Butcher S E. Metal binding and base ionization in the U6 RNA intramolecular stem-loop structure. Nature Structural Biology, 2002, 9: 431–435

31
Kazantsev A V, Krivenko A A, Pace N R. Mapping metal-binding sites in the catalytic domain of bacterial RNase P RNA. RNA (New York, N.Y.), 2009, 15: 266–276

32
Thompson J E, Raines R T. Value of general acid-base catalysis to Ribonuclease A. Journal of the American Chemical Society, 1994, 116: 5467–5468

33
Raines R T, Ribonuclease A. Chemical Reviews, 1998, 98: 1045–1066

34
Rupert P B, Ferré-D’Amaré A R. Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature, 2001, 410: 780–786

35
Ke A, Zhou K, Ding F, Cate J H, Doudna J A. A conformational switch controls hepatitis delta virus ribozyme catalysis. Nature, 2004, 429: 201–205

36
Martick M, Scott W G. Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell, 2006, 126: 309–320

37
Klein D J, Ferré-D’Amaré A R. Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science, 2006, 313: 1752–1756

38
Cochrane J C, Lipchock S V, Strobel S A. Structural investigation of the GlmS ribozyme bound to its catalytic cofactor. Chemistry & Biology, 2007, 14: 97–105

39
Liu Y, Wilson T J, McPhee S A, Lilley D M. Crystal structure and mechanistic investigation of the twister ribozyme. Nature Chemical Biology, 2014, 10: 739–744

40
Eiler D, Wang J, Steitz T A. Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 13028–13033

41
Ren A, Kosutic M, Rajashankar K R, Frener M, Santner T, Westhof E, Micura R, Patel D J. In-line alignment and Mg2+ coordination at the cleavage site of the env22 twister ribozyme. Nature Communications, 2014, 5: 5534

42
Suslov N B, DasGupta S, Huang H, Fuller J R, Lilley D M, Rice P A, Piccirilli J A. Crystal structure of the Varkud satellite ribozyme. Nature Chemical Biology, 2015, 11: 840–846

43
Han J, Burke J M. Model for general acid-base catalysis by the hammerhead ribozyme: pH-activity relationships of G8 and G12 variants at the putative active site. Biochemistry, 2005, 44: 7864–7870

44
Klein D J, Been M D, Ferré-D’Amaré A R. Essential role of an active-site guanine in glmS ribozyme catalysis. Journal of the American Chemical Society, 2007, 129: 14858–14859

45
Wilson T J, McLeod A C, Lilley D M J. A guanine nucleobase important for catalysis by the VS ribozyme. EMBO Journal, 2007, 26: 2489–2500

46
Cochrane J C, Lipchock S V, Smith K D, Strobel S A. Structural and chemical basis for glucosamine 6-phosphate binding and activation of the glmS ribozyme. Biochemistry, 2009, 48: 3239–3246

47
Kath-Schorr S, Wilson T J, Li N S, Lu J, Piccirilli J A, Lilley D M. General acid-base catalysis mediated by nucleobases in the hairpin ribozyme. Journal of the American Chemical Society, 2012, 134: 16717–16724

48
Lafontaine D A, Wilson T J, Norman D G, Lilley D M J. The A730 loop is an important component of the active site of the VS ribozyme. Journal of Molecular Biology, 2001, 312: 663–674

49
Rupert P B, Massey A P, Sigurdsson S T, Ferré-D'Amaré A R. Transition state stabilization by a catalytic RNA. Science, 2002, 298: 1421–1424

50
Wilson T J, Li N S, Lu J, Frederiksen J K, Piccirilli J A, Lilley D M J. Nucleobase-mediated general acid-base catalysis in the Varkud satellite ribozyme. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 11751–11756

51
Wilson T J, Lilley D M J. Do the hairpin and VS ribozymes share a common catalytic mechanism based on general acid-base catalysis? A critical assessment of available experimental data. RNA (New York, N.Y.), 2011, 17: 213–221

52
Nakano S, Chadalavada D M, Bevilacqua P C. General acid-base catalysis in the mechanism of a hepatitis delta virus ribozyme. Science, 2000, 287: 1493–1497

53
Das S R, Piccirilli J A. General acid catalysis by the hepatitis delta virus ribozyme. Nature Chemical Biology, 2005, 1: 45–52

54
Chen J H, Yajima R, Chadalavada D M, Chase E, Bevilacqua P C, Golden B L A. 1.9 A crystal structure of the HDV ribozyme precleavage suggests both Lewis acid and general acid mechanisms contribute to phosphodiester cleavage. Biochemistry, 2010, 49: 6508–6518

55
McCarthy T J, Plog M A, Floy S A, Jansen J A, Soukup J K, Soukup G A. Ligand requirements for glmS ribozyme self-cleavage. Chemistry & Biology, 2005, 12: 1221–1226

56
Winkler W C, Nahvi A, Roth A, Collins J A, Breaker R R. Control of gene expression by a natural metabolite-responsive ribozyme. Nature, 2004, 428: 281–286

57
Prody G A, Bakos J T, Buzayan J M, Schneider I R, Bruening G. Autolytic processing of dimeric plant virus satellite RNA. Science, 1986, 231: 1577–1580

58
Forster A C, Symons R H. Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell, 1987, 49: 211–220

59
Lee T S, Silva L C, Giambasu G M, Martick M, Scott W G, York D M. Role of Mg2+ in hammerhead ribozyme catalysis from molecular simulation. Journal of the American Chemical Society, 2008, 130: 3053–3064

60
Thomas J M, Perrin D M. Probing general acid catalysis in the hammerhead ribozyme. Journal of the American Chemical Society, 2009, 131: 1135–1143

61
Johnston W K, Unrau P J, Lawrence M S, Glasner M E, Bartel D P. RNA-catalyzed RNA polymerization: Accurate and general RNA-templated primer extension. Science, 2001, 292: 1319–1325

62
Robertson M P, Joyce G F. Highly efficient self-replicating RNA enzymes. Chemistry & Biology, 2014, 21: 238–245

63
Attwater J, Wochner A, Holliger P. In-ice evolution of RNA polymerase ribozyme activity. Nature Chemistry, 2013, 5: 1011–1018

64
Ekland E H, Szostak J W, Bartel D P. Structurally complex and highly active RNA ligases derived from random RNA sequences. Science, 1995, 269: 364–370

65
Shechner D M, Grant R A, Bagby S C, Koldobskaya Y, Piccirilli J A, Bartel D P. Crystal structure of the catalytic core of an RNA-polymerase ribozyme. Science, 2009, 326: 1271–1275

66
Sengle G, Eisenfuhr A, Arora P S, Nowick J S, Famulok M. Novel RNA catalysts for the Michael reaction. Chemistry & Biology, 2001, 8: 459–473

67
Fusz S, Eisenfuhr A, Srivatsan S G, Heckel A, Famulok M. A ribozyme for the aldol reaction. Chemistry & Biology, 2005, 12: 941–950

68
Oberhuber M, Joyce G F. A DNA-templated aldol reaction as a model for the formation of pentose sugars in the RNA world. Angewandte Chemie, 2005, 44: 7580–7583

69
Seelig B, Jäschke A. A small catalytic RNA motif with Diels-Alderase activity. Chemistry & Biology, 1999, 6: 167–176

70
Benner S A, Ellington A D, Tauer A. Modern metabolism as a palimpsest of the RNA world. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86: 7054–7058

71
Jadhav V R, Yarus M. Coenzymes as coribozymes. Biochimie, 2002, 84: 877–888

72
Breaker R R. Prospects for riboswitch discovery and analysis. Molecular Cell, 2011, 43: 867–879

73
Winkler W C, Breaker R R. Genetic control by metabolite-binding riboswitches. ChemBioChem, 2003, 4: 1024–1032

74
Winkler W, Nahvi A, Breaker R R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature, 2002, 419: 952–956

75
Wang J, Daldrop P, Huang L, Lilley D M. The k-junction motif in RNA structure. Nucleic Acids Research, 2014, 42: 5322–5331

76
Thore S, Leibundgut M, Ban N. Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand. Science, 2006, 312: 1208–1211

77
Serganov A, Polonskaia A, Phan A T, Breaker R R, Patel D J. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature, 2006, 441: 1167–1171

Outlines

/