REVIEW ARTICLE

Confinement effects in methanol to olefins catalysed by zeolites: A computational review

  • German Sastre
Expand
  • Instituto de Tecnologia Quimica U.P.V.-C.S.I.C, Universidad Politecnica de Valencia, Avenida Los Naranjos s/n, 46022 Valencia, Spain

Received date: 06 Nov 2015

Accepted date: 14 Dec 2015

Published date: 29 Feb 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Small pore zeolites, containing 8-rings as the largest, are widely employed as catalysts in the process of methanol-to-olefins (MTO). Reactants and products diffuse with constraints through 8-rings and this is one of the reaction bottlenecks related to zeolite micropore topology. Small pore zeolites and silicon-aluminophosphates(SAPOs) containing cavities, where olefins are mainly formed through the hydrocarbon pool (HP) mechanism, are frequently tested for MTO. Shape selectivity of transition states within the side-chain methylation will be reviewed as this is one of the controlling steps of the MTO process, with particular attention to the role of hexamethylbenzene (HMB) and heptamethylbenzenium cation (HeptaMB+), which are the most tipically detected reaction intermediates, common to the paring and side-chain routes within the HP mechanism. The relative stability of these and other species will be reviewed in terms of confinement effects in different cage-based zeolites. The role of the different alkylating agents, methanol, dimethyl ether (DME), and surface methoxy species (SMS) will also be reviewed from the computational viewpoint.

Cite this article

German Sastre . Confinement effects in methanol to olefins catalysed by zeolites: A computational review[J]. Frontiers of Chemical Science and Engineering, 2016 , 10(1) : 76 -89 . DOI: 10.1007/s11705-016-1557-3

Acknowledgements

This work has been made on the framework of a collaboration with professors Michel Waroquier, Veronique Van Speybroeck and Karen Hemelsoet. Useful discussions and exchange of ideas are gratefully acknowledged. Ministerio de Economia y Competitividad of Spain is thanked by the provision of funding through the excellence programme ‘Severo Ochoa’ (SEV-2012-0267).
1
Chen J Q, Bozzano A, Glover B, Fuglerud T, Kvisle S. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catalysis Today, 2005, 106: 103–107

2
Tian P, Wei Y, Ye M, Liu Z. Methanol to olefins (MTO): From fundamentals to commercialization . ACS Catalysis, 2015, 5: 1922–1938

3
ICIS news. 2015

4
Wilson S T, Lok B M, Messina C A, Cannan T R, Flanigen E M. Aluminophosphate molecular sieves: A new class of microporous crystalline inorganic solids. Journal of the American Chemical Society, 1982, 104: 1146–1147

5
Lok B M, Messina C A, Patton R L, Gajek R T, Cannan T R, Flanigen E M. Silicoaluminophosphate molecular sieves: Another new class of microporous crystalline inorganic solids. Journal of the American Chemical Society, 1984, 106: 6092–6093

6
Stöker M. Methanol-to-hydrocarbons: Catalytic materials and their behavior. Microporous and Mesoporous Materials, 1999, 29: 3–48

7
Keil F J. Methanol-to-hydrocarbons: Process technology. Microporous and Mesoporous Materials, 1999, 29: 49–66

8
Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens T V W, Joensen F, Bordiga S, Lillerud K P. Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity. Angewandte Chemie International Edition, 2012, 51: 5810–5831

9
Hemelsoet K, Van der Mynsbrugge J, De Wispelaere K, Waroquier M, Van Speybroeck V. Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment. ChemPhysChem, 2013, 14: 1526–1545

10
Van Speybroeck V, De Wispelaere K, Van der Mynsbrugge J, Vandichel M, Hemelsoet K, Waroquier M. First principle chemical kinetics in zeolites: The methanol-to-olefin process as a case study. Chemical Society Reviews, 2014, 43: 7326–7357

11
Olsbye U, Svelle S, Lillerud K P, Wei Z H, Chen Y Y, Li J F, Wang J G, Fan W B. The formation and degradation of active species during methanol conversion over protonated zeotype catalysts. Chemical Society Reviews, 2015, 44: 7155–7176

12
Lesthaeghe D, Van Speybroeck V, Marin G B, Waroquier M. Understanding the failure of direct C‒C coupling in the zeolite-catalyzed methanol-to-olefin process. Angewandte Chemie International Edition, 2006, 45: 1714–1719

13
Erichsen M W, De Wispelaere K, Hemelsoet K, Moors S L C, Deconinck T, Waroquier M, Svelle S, Van Speybroeck V, Olsbye U. How zeolitic acid strength and composition alter the reactivity of alkenes and aromatics towards methanol. Journal of Catalysis, 2015, 328: 186–196

14
Combariza A F, Sastre G, Corma A. Propane/propylene diffusion in zeolites: Framework dynamics. Journal of Physical Chemistry C, 2009, 113: 11246–11253

15
Vidoni A, Ruthven D M. Diffusion of C2H6 and C2H4 in DDR zeolite. Industrial & Engineering Chemistry Research, 2012, 51: 1383–1390

16
Sastre G. Computational study of diffusion of propane in small pore acidic zeotypes AFX and AEI. Catalysis Today, 2014, 226: 25–36

17
Kang L, Zhang T, Liu Z, Han K L. Methanol adsorption in isomorphously substituted AlPO-34 clusters and periodic density functional theory calculations. Journal of Physical Chemistry C, 2008, 112: 5526–5532

18
Gale J D, Catlow C R A, Carruthers J R. An ab initio study of methanol adsorption in zeolites. Chemical Physics Letters, 1993, 216: 155–161

19
Haase F, Sauer J. Interaction of methanol with Brønsted acid sites of zeolite catalysts: An ab initio study. Journal of the American Chemical Society, 1995, 117: 3780–3789

20
Zicovich-Wilson C M, Viruela P, Corma A. Formation of surface methoxy groups on H-zeolites from methanol. A quantum-chemical study. Journal of Physical Chemistry, 1995, 99: 13224–13231

21
Shah R, Payne M C, Lee M H, Gale J D. Understanding the catalytic behavior of zeolites: A first-principles study of the adsorption of methanol. Science, 1996, 271: 1395–1397

22
Blaszkowski S R, van Santen R A. Theoretical study of the mechanism of surface methoxy and dimethyl ether formation from methanol catalyzed by zeolitic protons. Journal of Physical Chemistry B, 1997, 101: 2292–2305

23
Van der Mynsbrugge J, Moors S L C, De Wispelaere K, Van Speybroeck V. Insight into the formation and reactivity of framework-bound methoxide species in H-ZSM-5 from static and dynamic molecular simulations. ChemCatChem, 2014, 6: 1906–1918

24
Blaszkowski S R, van Santen R A. Theoretical study of C‒C bond formation in the methanol-to-gasoline process. Journal of the American Chemical Society, 1997, 119: 5020–5027

25
Sinclair P E, Catlow C R A. Computational studies of the reaction of methanol at aluminosilicate Brønsted acid sites. Journal of the Chemical Society, Faraday Transactions, 1996, 92: 2099–2105

26
Kobayashi Y, Li Y, Wang Y, Wang D. Adsorption isotherms of methanol and dimethyl ether on SAPO-34 measured together with differential adsorption heat measurement. Chinese Journal of Catalysis, 2013, 34: 2192–2199

27
Li J, Wei Z, Chen Y, Jing B, He Y, Dong M, Jiao H, Li X, Qin Z, Wang J, Fan W. A route to form initial hydrocarbon pool species in methanol conversion to olefins over zeolites. Journal of Catalysis, 2014, 317: 277–283

28
Munson E J, Kheir A A, Lazo N D, Haw J F. In situ solid-state NMR-study of methanol-to-gasoline chemistry in zeolite HZSM-5. Journal of Physical Chemistry, 1992, 96: 7740–7746

29
Svelle S, Visur M, Olsbye U, Saepurahman S, Bjorgen M. Mechanistic aspects of the zeolite catalyzed methylation of alkenes and aromatics with methanol: A review. Topics in Catalysis, 2011, 54: 897–906

30
Maihom T, Boekfa B, Sirijaraensre J, Nanok T, Probst M, Limtrakul J. Reaction mechanisms of the methylation of ethene with methanol and dimethyl ether over H-ZSM-5: An ONIOM study. Journal of Physical Chemistry C, 2009, 113: 6654–6662

31
Haw J F, Marcus D M, Kletnieks P W. Comments on the paper: Effect of organic impurities on the hydrocarbon formation via the decomposition of surface methoxy groups on acidic zeolite catalysts. Journal of Catalysis, 2006, 244: 130–133

32
Jiang Y, Wang W, Marthala V R, Huang J, Sulikowski B, Hunger M. Response to comments on the paper: Effect of organic impurities on the hydrocarbon formation via the decomposition of surface methoxy groups on acidic zeolite catalysts. Journal of Catalysis, 2006, 244: 134–136

33
Cui Z M, Liu Q, Song W G, Wan L J. Insights into the mechanism of methanol-to-olefin conversion at zeolites with systematically selected framework structures. Angewandte Chemie International Edition, 2006, 45: 6512–6515

34
Tajima N, Tsuneda T, Toyama F, Hira K. A new mechanism for the first carbon-carbon bond formation in the MTGprocess: A theoretical study. Journal of the American Chemical Society, 1998, 120: 8222–8229

35
Yamazaki H, Shima H, Imai H, Yokoi T, Tatsumi T, Kondo J N. Evidence for a carbene-like intermediate during the reaction of methoxy species with light alkenes on H-ZSM-5. Angewandte Chemie International Edition, 2011, 50: 1853–1856

36
Shah R, Gale J D, Payne M C. In situ study of reactive intermediates of methanol in zeolites from first principles Calculations. Journal of Physical Chemistry B, 1997, 101: 4787–4797

37
Govind N, Andzelm J, Reindel K, Fitzgerald G. Zeolite-catalyzed hydrocarbon formation from methanol: Density functional simulations. International Journal of Molecular Sciences, 2002, 3: 423–434

38
Dejaifve P, Vedrine J C, Bolis V, Derouane E G. Reaction pathways for the conversion of methanol and olefins on H-ZSM-5 zeolite. Journal of Catalysis, 1980, 63: 331–345

39
Wang W, Jiang Y, Hunger M. Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic zeolite catalysts by in situ solid-state NMR spectroscopy. Catalysis Today, 2006, 113: 102–114

40
Dahl I M, Kolboe S. On the reaction mechanism for propene formation in the MTO reaction over SAPO-34. Catalysis Letters, 1993, 20: 329–336

41
Haw J F, Nicholas J B, Song W, Deng F, Wang Z N T, Heneghan C S. Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5. Journal of the American Chemical Society, 2000, 122: 4763–4775

42
Arstad B, Kolboe S, Swang O. A Theoretical investigation on the methylation of methylbenzenes on zeolites. Journal of Physical Chemistry B, 2002, 106: 12722–12726

43
Xu S, Zheng A, Wei Y, Chen J, Li J, Chu Y, Zhang M, Wang Q, Zhou Y, Wang J, Deng F, Liu Z. Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites. Angewandte Chemie International Edition, 2013, 52: 11564–11568

44
Wang J, Wei Y, Wei J, Li J, Xu S, Zhang W, He Y, Chen J, Zhang M, Zheng A, Deng F, Guob X, Liu Z. Direct observation of methylcyclopentenyl cations (MCP+) and olefin generation in methanol conversion over TON zeolite. Catalysis Science & Technology, 2016, 6: 89–97

45
Wang C, Chu Y, Zheng A, Xu J, Wang Q, Gao P, Qi G, Gong Y, Deng F. New insight into the hydrocarbon-pool chemistry of the methanol-to-olefins conversion over zeolite H-ZSM-5 from GC-MS, solid-state NMR spectroscopy, and DFT calculations. Chemistry-A European Journal, 2014, 20: 12432–12443

46
Arstad B, Nicholas J B, Haw J F. Theoretical study of the methylbenzene side-chain hydrocarbon pool mechanism inmethanol to olefin catalysis. Journal of the American Chemical Society, 2004, 126: 2991–3001

47
Van Speybroeck V, Hemelsoet K, De Wispelaere K, Qian Q, Van der Mynsbrugge J, De Sterck B, Weckhuysen B M, Waroquier M. Mechanistic studies on chabazite-type methanol-to-olefin catalysts: Insights from time-resolved UV/Vis microspectroscopy combined with theoretical simulations. ChemCatChem, 2013, 5: 173–184

48
Van der Mynsbrugge J, De Ridder J, Hemelsoet K, Waroquier M, Van Speybroeck V. Enthalpy and entropy barriers explain the effects of topology on the kinetics of zeolite-catalyzed reactions. Chemistry-A European Journal, 2013, 19: 11568–11576

49
Chan B, Radom L. A computational study of methanol-to-hydrocarbon conversion—towards the design of a low-barrier process. Canadian Journal of Chemistry, 2010, 88: 866–876

50
McCann D M, Lesthaeghe D, Kletnieks P W, Guenther D R, Hayman M J, Van Speybroeck V, Waroquier M, Haw J F. A complete catalytic cycle for supramolecular methanol-to-olefins conversion by linking theory with experiment. Angewandte Chemie International Edition, 2008, 47: 5179–5182

51
Lesthaeghe D, De Sterck B, Van Speybroeck V, Marin G B, Waroquier M. Zeolite shape-selectivity in the gem-methylation of aromatic hydrocarbons. Angewandte Chemie International Edition, 2007, 46: 1311–1314

52
De Wispelaere K, Hemelsoet K, Waroquier M, Van Speybroeck V. Complete low-barrier side-chain route for olefin formation during methanol conversion in H-SAPO-34. Journal of Catalysis, 2013, 305: 76–80

53
Wang C M, Wang Y D, Xie Z K, Liu Z P. Methanol to olefin conversion on HSAPO-34 zeolite from periodic density functional theory calculations: A complete cycle of side chain hydrocarbon pool mechanism. Journal of Physical Chemistry C, 2009, 113: 4584–4591

54
Bjørgen M, Akyalcin S, Olsbye U, Benard S, Kolboe S, Svelle S. Methanol to hydrocarbons over large cavity zeolites: Toward a unified description of catalyst deactivation and the reaction mechanism. Journal of Catalysis, 2010, 275: 170–180

55
Wang C M, Wang Y D, Xie Z K. Verification of the dual cycle mechanism for methanol-to-olefin conversion in HSAPO-34: A methylbenzene-based cycle from DFT calculation. Catalysis Science & Technology, 2014, 4: 2631–2638

56
Wang C M, Wang Y D, Liu H X, Xie Z K, Liu Z P. Catalytic activity and selectivity of methylbenzenes in HSAPO-34 catalyst for the methanol-to-olefins conversion from first principles. Journal of Catalysis, 2010, 271: 386–391

57
Hereijgers B P C, Bleken F, Nilsen M H, Svelle S, Lillerud K P, Bjørgen M, Weckhuysen B M, Olsbye U. Product shape selectivity dominates the methanol-to-olefins (MTO) reaction over H-SAPO-34 catalysts. Journal of Catalysis, 2009, 264: 77–87

58
De Wispelaere K, Hemelsoet K, Waroquier M, Van Speybroeck V. Complete low-barrier side-chain route for olefin formation during methanol conversion in H-SAPO-34. Journal of Catalysis, 2013, 305: 76–80

59
Lesthaeghe D, Van der Mynsbrugge J, Vandichel M, Waroquier M, Van Speybroeck V. Full theoretical cycle for both ethene and propene formation during methanol-to-olefin conversion in H-ZSM-5. ChemCatChem, 2011, 3: 208

60
Dai W, Wang C M, Dyballa M, We G, Guan N, Li L, Xie Z K, Hunger M. Understanding the early stages of the methanol-to-olefin conversion on H SAPO-34. ACS Catalysis, 2015, 5: 317–326

61
Wang C M, Wang Y D, Xie Z K. Insights into the reaction mechanism of methanol-to-olefins conversion in HSAPO-34 from first principles: Are olefins themselves the dominating hydrocarbon pool species? Journal of Catalysis, 2013, 301: 8–19

62
Wang C M, Wang Y D, Du Y J, Yang G, Xie Z K. Similarities and differences between aromatic- based and olefin-based cycles in H-SAPO-34 and H-SSZ-13 for methanol-to-olefins conversion: insights from energetic span model. Catalysis Science & Technology, 2015, 5: 4354–4364

63
Svelle S, Olsbye U, Joensen F, Bjørgen M. Conversion of methanol to alkenes over medium- and large-pore acidic zeolites: Steric manipulation of the reaction intermediates governs the ethene/propene product selectivity. Journal of Physical Chemistry C, 2007, 111: 17981–17984

64
Marchese L, Berlier G, Coluccia S. Solid acid microporous H-SAPO-34: From early studies to perspectives. In: Harris K D, Edwards P P, eds. Turning Points in Solid State, Materials and Surface Science. London: Royal Society of Chemistry, 2007, 36: 604–622

65
Li J, Wei Y, Liu G, Qi Y, Tian P, Li B, He Y, Liu Z. Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22: Correlating catalytic performance and reaction mechanism to zeolite topology. Catalysis Today, 2011, 171: 221–228

66
Dessau R M, Lapierre R B. On the mechanism of methanol conversion to hydrocarbons over HZSM-5. Journal of Catalysis, 1982, 78: 136–141

67
Svelle S, Rønning P O, Kolboe S. Kinetic studies of zeolite-catalyzed methylation reactions: 1. Coreaction of [12C]ethene and [13C]methanol. Journal of Catalysis, 2004, 224: 115–123

68
Bleken F, Skistad W, Barbera K, Kustova M, Bordiga S, Beato P, Lillerud K P, Svelle S, Olsbye U. Conversion of methanol over 10-ring zeolites with differing volumes at channel intersections: comparison of TNU-9, IM-5, ZSM-11 and ZSM-5. Physical Chemistry Chemical Physics, 2011, 13: 2539–2549

69
Wang C M, Wang Y D, Liu H X, Yang G, Du Y J, Xie Z K. Aromatic-based hydrocarbon pool mechanism for methanol-to-olefins conversion in H-SAPO-18: A van der Waals density functional study. Chinese Journal of Catalysis, 2015, 36: 1573–1579

70
Castro M, Warrender S J, Wright P A, Apperley D C, Belmabkhout Y, Pirngruber G, Min H K, Park M B, Hong S B. Silicoaluminophosphate molecular sieves STA-7 and STA-14 and their structure-dependent catalytic performance in the conversion of methanol to olefins. Journal of Physical Chemistry C, 2009, 113: 15731–15741

71
Park J W, Lee J Y, Kim K S, Hong S B, Seo G. Effects of cage shape and size of 8-membered ring molecular sieves on their deactivation in methanol-to-olefin (MTO) reactions. Applied Catalysis A, 2008, 339: 36–44

72
Li J, Wei Y, Chen J, Tian P, Su X, Xu S, Qi Y, Wang Q, Zhou Y, He Y, Liu Z. Observation of heptamethylbenzenium cation over SAPO-type molecular sieve DNL-6 under real MTO conversion conditions. Journal of the American Chemical Society, 2012, 134: 836–839

73
Li J, Wei Y, Chen J, Xu S, Tian P, Yang X, Li B, Wang J, Liu Z. Cavity controls the selectivity: Insights of confinement effects on MTO reaction. ACS Catalysis, 2015, 5: 661–665

74
Su X, Xu S, Tian P, Li J, Zheng A, Wang Q, Yang M, Wei Y, Deng F, Liu Z. Investigation of the strong Brønsted acidity in a novel SAPO-type molecular sieve, DNL6. Journal of Physical Chemistry C, 2015, 119: 2589–2596

75
Moors S L C, De Wispelaere K, Van der Mynsbrugge J, Waroquier M, Van Speybroeck V. Molecular dynamics kinetic study on the zeolite-catalyzed benzene methylation in ZSM-5. ACS Catalysis, 2013, 3: 2556–2567

76
Gale J D. GULP: A computer program for the symmetry-adapted simulation of solids. Journal of the Chemical Society, Faraday Transactions, 1997, 93: 629–637

77
Gale J D, Rohl A L. The general utility lattice program (GULP). Molecular Simulation, 2003, 29: 291–341

78
Gale J D, Rohl A L. An efficient technique for the prediction of solvent-dependent morphology: The COSMIC method. Molecular Simulation, 2007, 33: 1237–1246

79
Baerlocher C, McCusker L B, Olson D H. Atlas of Zeolite Framework Types. 6th revised ed. Amsterdam: Elsevier , 2007

80
Lesthaeghe D, Horré A, Waroquier M, Marin G B, Van Speybroeck V. Theoretical insights on methylbenzene side-chain growth in ZSM-5 zeolites for methanol-to-olefin conversion. Chemistry-A European Journal, 2009, 15: 10803–10808

81
Sastre G, Katada N, Niwa M. Computational study of Brønsted acidity of mordenite. Effect of the electric field on the infrared OH stretching frequencies. Journal of Physical Chemistry C, 2010, 114: 15424–15431

82
Wragg D S, Johnsen R E, Balasundaram M, Norby P, Fjellvåg H, Grønvold A, Fuglerud T, Hafizovic J, Vistad Ø B, Akporiaye D. SAPO-34 methanol-to-olefin catalysts under working conditions: A combined in situ powder X-ray diffraction, mass spectrometry and Raman study . Journal of Catalysis, 2009, 268: 290–296

83
Zokaie M, Wragg D S, Grønvold A, Fuglerud T, Cavka J H, Lillerud K P, Swang O. Unit cell expansion upon coke formation in a SAPO-34 catalyst: A combined experimental and computational study. Microporous and Mesoporous Materials, 2013, 165: 1–5

84
Combariza A F, Gomez D A, Sastre G. Simulating the properties of small pore silica zeolites using interatomic potentials. Chemical Society Reviews, 2013, 42: 114–127

Outlines

/