REVIEW ARTICLE

Discovery and development of synthetic tricyclic pyrroloquinone (TPQ) alkaloid analogs for human cancer therapy

  • Wei Wang 1,2 ,
  • Bhavitavya Nijampatnam 3 ,
  • Sadanandan E. Velu , 3 ,
  • Ruiwen Zhang , 1,2
Expand
  • 1. Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
  • 2. Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
  • 3. Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA

Received date: 09 Dec 2015

Accepted date: 18 Jan 2016

Published date: 29 Feb 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Natural products and their derivatives represent a rich source for the discovery and development of new cancer therapeutic drugs. Bioactive components derived from natural sources including marine compounds have been shown to be effective agents in the clinic or in preclinical settings. In the present review, we present a story of discovery, synthesis and evaluation of three synthetic tricyclic pyrroloquinone (TPQ) alkaloid analogs as cancer therapeutic agents. Chemical synthesis of these compounds (BA-TPQ, TBA-TPQ, and TCBA-TPQ) has been accomplished and the mechanisms of action (MOA) and structure-activity relationships (SAR) have been investigated. In the past, the complexity of chemical synthesis and the lack of well-defined MOA have dampened the enthusiasm for the development of some makaluvamines. Recent discovery of novel molecular targets for these alkaloids (unrelated to inhibition of Topoisomerase II) warrant further consideration as clinical candidates in the future. In addition to the establishment of novel synthetic approaches and demonstration of in vitro and in vivo anticancer activities, we have successfully demonstrated that these makaluvamines attack several key molecular targets, including the MDM2-p53 pathway, providing ample opportunities of modulating the compound structure based on SAR and the use of such compounds in combination therapy in the future.

Cite this article

Wei Wang , Bhavitavya Nijampatnam , Sadanandan E. Velu , Ruiwen Zhang . Discovery and development of synthetic tricyclic pyrroloquinone (TPQ) alkaloid analogs for human cancer therapy[J]. Frontiers of Chemical Science and Engineering, 2016 , 10(1) : 1 -15 . DOI: 10.1007/s11705-016-1562-6

Conflicts of interest

The authors declare no conflict of interest.AcknowledgementsƒThis work was supported by the National Institutes of Health (NIH) grant R01 CA186662 (to R.Z.). This work was also supported by Collaborative Programmatic Development grant from UAB Comprehensive Cancer Center and NIH National Center for Research Resources 1UL1RR025777 (to V.S.). The content is solely the responsibility of the authors, and do not necessarily represent the official views of the National Institutes of Health. This work was also supported by the American Cancer Society (ACS) grant RSG-15-009-01-CDD (to W.W.).
1
Siegel R, Miller K D, Jemal A. Cancer statistics, 2015. CA: A Cancer Journal for Clinicians, 2015, 65(1): 5–29

DOI

2
Wang H, Khor T O, Shu L, Su Z Y, Fuentes F, Lee J H, Kong A N. Plants vs. cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anti-cancer Agents in Medicinal Chemistry, 2012, 12(10): 1281–1305

DOI

3
Nobili S, Lippi D, Witort E, Donnini M, Bausi L, Mini E, Capaccioli S. Natural compounds for cancer treatment and prevention. Pharmacological Research, 2009, 59(6): 365–378

DOI

4
Mehta R G, Murillo G, Naithani R, Peng X. Cancer chemoprevention by natural products: How far have we come? Pharmacological Research, 2010, 27(6): 950–961

DOI

5
Nag S, Nadkarni D H, Qin J J, Voruganti S, Nguyen T, Xu S, Wang W, Wang H, Velu S E, Zhang R. Anticancer activity and molecular mechanisms of action of makaluvamines and analogues. Molecular and Cellular Pharmacology, 2012, 4(2): 69–81

6
Mehbub M, Lei J, Franco C, Zhang W. Marine sponge derived natural products between 2001 and 2010: Trends and opportunities for discovery of bioactives. Marine Drugs, 2014, 12(8): 4539–4577

DOI

7
Manivasagan P, Kang K H, Sivakumar K, Li-Chan E C, Oh H M, Kim S K. Marine actinobacteria: An important source of bioactive natural products. Environmental Toxicology and Pharmacology, 2014, 38(1): 172–188

DOI

8
Kita Y, Fujioka H. Marine pyrroloiminoquinone alkaloids. Topics in Current Chemistry, 2012, 309: 131–162

DOI

9
Bhatnagar I, Kim S K. Marine antitumor drugs: Status, shortfalls and strategies. Marine Drugs, 2010, 8(10): 2702–2720

10
Zanchett G, Oliveira-Filho E C. Cyanobacteria and cyanotoxins: From impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins, 2013, 5(10): 1896–1917

DOI

11
Jakubowska N, Szeląg-Wasielewska E. Toxic picoplanktonic cyanobacteria—review. Marine Drugs, 2015, 13(3): 1497–1518

DOI

12
Reen F, Gutiérrez-Barranquero J, Dobson A, Adams C, O’Gara F. Emerging concepts promising new horizons for marine biodiscovery and synthetic biology. Marine Drugs, 2015, 13(5): 2924–2954

DOI

13
Haefner B. Drugs from the deep, marine natural products as drug candidates. Drug Discovery Today, 2003, 8(12): 536–544

DOI

14
Simmons T L, Andrianasolo E, McPhail K, Flatt P, Gerwick W H. Marine natural products as anticancer drugs. Molecular Cancer Therapeutics, 2005, 4(2): 333–342

15
Venter J C, Remington K, Heidelberg J F, Halpern A L, Rusch D, Eisen J A, Wu D, Paulsen I, Nelson K E, Nelson W, Fouts D E, Levy S, Knap A H, Lomas M W, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers Y H, Smith H O. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 2004, 304(5667): 66–74

16
Williams D H, Stone M J, Hauck P R, Rahman S K. Why are secondary metabolites (natural products) biosynthesized? Journal of Natural Products, 1989, 52(6): 1189–1208

DOI

17
Firn R D, Jones C G. Natural products-a simple model to explain chemical diversity. Natural Product Reports, 2003, 20(4): 382–391

18
Sipkema D, Franssen M C R, Osinga R, Tramper J, Wijffels R H. Marine sponges as pharmacy. Marine Biotechnology (New York, N.Y.), 2005, 7(3): 142–162

DOI

19
Mayer A M, Rodríguez A D, Taglialatela-Scafati O, Fusetani N. Marine pharmacology in 2009–2011: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Marine Drugs, 2013, 11(7): 2510–2573

20
Antunes E M, Copp B R, Davies-Coleman M T, Samaai T. Pyrroloiminoquinone and related metabolites from marine sponges. Natural Product Reports, 2005, 22(1): 62–72

21
Faulkner D J. Marine natural products. Natural Product Reports, 2002, 19(1): 1–48

22
Carney J R, Scheuer P J, Kelly-Borges M. Makaluvamine G. A cytotoxic pigment from an Indonesian sponge Histodermella sp. Tetrahedron, 1993, 49(38): 8483–8486

DOI

23
Casapullo A, Cutignano A, Bruno I, Bifulco G, Debitus C, Gomez-Paloma L, Riccio R. Makaluvamine P, a new cytotoxic pyrroloiminoquinone from Zyzzya cf. fuliginosa. Journal of Natural Products, 2001, 64(10): 1354–1356

24
Radisky D C, Radisky E S, Barrows L R, Copp B R, Kramer R A, Ireland C M. Novel cytotoxic topoisomerase II inhibiting pyrroloiminoquinones from Fijian sponges of the genus Zyzzya. Journal of the American Chemical Society, 1993, 115(5): 1632–1638

25
Gunasekera S P, Zuleta I A, Longley R E, Wright A E, Pomponi S A. Discorhabdins S, T, and U, new cytotoxic pyrroloiminoquinones from a deep-water Caribbean sponge of the genus Batzella. Journal of Natu ral Products, 2003, 66(12): 1615–1617

26
Bénéteau V, Pierré A, Pfeiffer B, Renard P, Besson T. Synthesis and antiproliferative evaluation of 7-aminosubstituted pyrroloiminoquinone derivatives. Bioorganic & Medicinal Chemistry Letters, 2000, 10(19): 2231–2234

DOI

27
Kokoshka J M, Capson T L, Holden J A, Ireland C M, Barrows L R. Differences in the topoisomerase I cleavage complexes formed by camptothecin and wakayin, a DNA-intercalating marine natural product. Anti-Cancer Drugs, 1996, 7(7): 758–765

DOI

28
Legentil L, Benel L, Bertrand V, Lesur B, Delfourne E. Synthesis and antitumor characterization of pyrazolic analogues of the marine pyrroloquinoline alkaloids, wakayin and tsitsikammamines. Journal of Medicinal Chemistry, 2006, 49(10): 2979–2988

29
Legentil L, Lesur B, Delfourne E. Aza-analogues of the marine pyrroloquinoline alkaloids wakayin and tsitsikammamines, synthesis and topoisomerase inhibition. Bioorganic & Medicinal Chemistry Letters, 2006, 16(2): 427–429

DOI

30
Zhao R, Oreski B, Lown J W. Synthesis and biological evaluation of hybrid molecules containing the pyrroloquinoline nucleus and DNA-minor groove binders. Bioorganic & Medicinal Chemistry Letters, 1996, 6(18): 2169–2172

DOI

31
Barrows L R, Radisky D C, Copp B R, Swaffar D S, Kramer R A, Warters R L, Ireland C M. Makaluvamines, marine natural products, are active anti-cancer agents and DNA topo II inhibitors. Anti-Cancer Drug Design, 1993, 8(5): 333–347

32
Stonik V A. Marine natural products: A way to new drugs. Acta Naturae, 2009, 1(2): 15–25

33
Mayer A M S, Glaser K B, Cuevas C, Jacobs R S, Kem W, Little R D, McIntosh J M, Newman D J, Potts B C, Shuster D E. The odyssey of marine pharmaceuticals: A current pipeline perspective. Trends in Pharmacological Sciences, 2010, 31(6): 255–265

DOI

34
Shetty N, Gupta S. Eribulin drug review. South Asian Journal of Cancer, 2014, 3(1): 57–59

DOI

35
Polastro L, Aftimos P G, Awada A. Eribulin mesylate in the management of metastatic breast cancer and other solid cancers: A drug review. Expert Review of Anticancer Therapy, 2014, 14(6): 649–665

DOI

36
Swami U, Shah U, Goel S. Eribulin in cancer treatment. Marine Drugs, 2015, 13(8): 5016–5058

37
Dybdal-Hargreaves N F, Risinger A L, Mooberry S L. Eribulin mesylate: Mechanism of action of a unique microtubule-targeting agent. Clinical Cancer Research, 2015, 21(11): 2445–2452

DOI

38
Doherty M K, Morris P G. Eribulin for the treatment of metastatic breast cancer: An update on its safety and efficacy. International Journal of Women’s Health, 2015, 7: 47–58

DOI

39
National Cancer Institute. FDA Approval for Eribulin Mesylate. 2015

40
National Institute for Health and Clinical. Excellence Trabectedin for the treatment of advanced soft tissue sarcoma. 2015

41
De Souza M V. (+)-discodermolide: A marine natural product against cancer. The Scientific World Journal, 2004, 4: 415–436

DOI

42
Shaw S J. The structure activity relationship of discodermolide analogues. Mini-Reviews in Medicinal Chemistry, 2008, 8(3): 276–284

DOI

43
Kingston D G. Tubulin-interactive natural products as anticancer agents. Journal of Natural Products, 2009, 72(3): 507–515

44
Smith A B III, Sugasawa K, Atasoylu O, Yang C P H, Horwitz S B. Design and synthesis of (+)-discodermolide-paclitaxel hybrids leading to enhanced biological activity. Journal of Medicinal Chemistry, 2011, 54(18): 6319–6327

DOI

45
Hu J F, Fan H, Xiong J, Wu S B. Discorhabdins and pyrroloiminoquinone-related alkaloids. Chemical Reviews, 2011, 111(9): 5465–5491

46
Nijampatnam B, Dutta S, Velu S E. Recent advances in isolation, synthesis, and evaluation of bioactivities of bispyrroloquinone alkaloids of marine origin. Chinese Journal of Natural Medicine, 2015, 13(8): 561–577

DOI

47
Copp B R, Ireland C M, Barrows L R. Wakayin: A novel cytotoxic pyrroloiminoquinone alkoloid from the Ascidian Clavelina Species. Journal of Organic Chemistry, 1991, 56(15): 4596–4597

DOI

48
Perry N B, Blunt J W, McCombs J D, Munro M H G. Discorhabdin C, a highly cytotoxic pigment from a sponge of the genus Latrunculia. Journal of Organic Chemistry, 1986, 51(26): 5476–5478

DOI

49
Wada Y, Harayama Y, Kamimura D, Yoshida M, Shibata T, Fujiwara K, Morimoto K, Fujioka H, Kita Y. The synthetic and biological studies of discorhabdins and related compounds. Organic & Biomolecular Chemistry, 2011, 9(13): 4959–4976

DOI

50
Wada Y, Fujioka H, Kita Y. Synthesis of the marine pyrroloiminoquinone alkaloids, discorhabdins. Marine Drugs, 2010, 8(4): 1394–1416

DOI

51
Legentil L, Benel L, Bertrand V, Lesur B, Delfourne E. Synthesis and antitumor characterization of pyrazolic analogues of the marine pyrroloquinoline alkaloids: Wakayin and tsitsikammamines. Journal of Medicinal Chemistry, 2006, 49(10): 2979–2988

DOI

52
Nunnery J K, Mevers E, Gerwick W H. Biologically active secondary metabolites from marine cyanobacteria. Current Opinion in Biotechnology, 2010, 21(6): 787–793

DOI

53
Shinkre B A, Raisch K P, Fan L, Velu S E. Analogs of the marine alkaloid makaluvamines: Synthesis, topoisomerase II inhibition, and anticancer activity. Bioorganic & Medicinal Chemistry Letters, 2007, 17(10): 2890–2893

54
Sadanandan E V, Pillai S K, Lakshmikantham M V, Billimoria A D, Culpepper J S, Cava M P. Efficient syntheses of the marine alkaloids makaluvamine D and discorhabdin C: The 4,6,7-trimethoxyindole approach. The Journal of Organic Chemistry, 1995, 60(6): 1800–1805

55
Shinkre B A, Raisch K P, Fan L, Velu S E. Synthesis and antiproliferative activity of benzyl and phenethyl analogs of makaluvamines. Bioorganic & Medicinal Chemistry, 2008, 16(5): 2541–2549

DOI

56
Wang W, Rayburn E R, Velu S E, Chen D, Nadkarni D H, Murugesan S, Chen D, Zhang R. A novel synthetic iminoquinone, BA-TPQ, as an anti-breast cancer agent: In vitro and in vivo activity and mechanisms of action. Breast Cancer Research and Treatment, 2010, 123(2): 321–331

DOI

57
Chen D, Wang W, Qin J J, Wang M H, Murugesan S, Nadkarni D H, Velu S E, Wang H, Zhang R. Identification of the ZAK-MKK4-JNK-TGFβ Signaling Pathway as a Molecular Target for Novel Synthetic Iminoquinone Anticancer Compound BA-TPQ. Current Cancer Drug Targets, 2013, 13(6): 651–660

DOI

58
Wang W, Rayburn E R, Velu S E, Nadkarni D H, Murugesan S, Zhang R. In vitro and in vivo anticancer activity of novel synthetic makaluvamine analogues. Clinical Cancer Research, 2009, 15(10): 3511–3518

DOI

59
Wang F, Ezell S J, Zhang Y, Wang W, Rayburn E R, Nadkarni D H, Murugesan S, Velu S E, Zhang R. FBA-TPQ, a novel marine-derived compound as experimental therapy for prostate cancer. Investigational New Drugs, 2010, 28(3): 234–241

60
Chen T, Xu Y, Guo H, Liu Y, Hu P, Yang X, Li X, Ge S, Velu S E, Nadkarni D H, Wang W, Zhang R, Wang H. Experimental therapy of ovarian cancer with synthetic makaluvamine analog: In vitro and in vivo anticancer activity and molecular mechanisms of action. PLoS One, 2011, 6(6): e20729

61
Zhang X, Xu H, Zhang X, Voruganti S, Murugesan S, Nadkarni D H, Velu S E, Wang M H, Wang W, Zhang R. Preclinical evaluation of anticancer efficacy and pharmacological properties of FBA-TPQ, a novel synthetic makaluvamine analog. Marine Drugs, 2012, 10(5): 1138–1155.

62
Nadkarni D H, Wang F, Wang W, Rayburn E R, Ezell S J, Murugesan S, Velu S E, Zhang R. Synthesis and in vitro anti-lung cancer activity of novel 1,3,4,8-tetrahydropyrrolo[4,3,2-de]quinolin-8(1H)-one alkaloid analogs. Medicinal Chemistry, 2009, 5(3): 227–236

63
Li H, Ezell S J, Zhang X, Wang W, Xu H, Rayburn E R, Zhang X, Gurpinar E, Yang X, Sommers C I, Velu S E, Zhang R. Development and validation of an HPLC method for quantitation of BA-TPQ, a novel iminoquinone anticancer agent, and an initial pharmacokinetic study in mice. Biomedical Chromatography, 2011, 25(5): 628–634

DOI

64
Ezell S J, Li H, Xu H, Zhang X, Gurpinar E, Zhang X, Rayburn E R, Sommers C I, Yang X, Velu S E, Wang W, Zhang R. Preclinical pharmacology of BA-TPQ, a novel synthetic iminoquinone anticancer agent. Marine Drugs, 2010, 8(7): 2129–2141

DOI

65
Zhang X, Xu H, Zhang X, Voruganti S, Murugesan S, Nadkarni D H, Velu S E, Wang M H, Wang W, Zhang R. Preclinical evaluation of anticancer efficacy and pharmacological properties of FBA-TPQ, a novel synthetic makaluvamine analog. Marine Drugs, 2012, 10(5): 1138–1155

DOI

66
Yu J X, Voruganti S, Li D D, Qin J J, Nag S, Xu S, Velu S E, Wang W, Zhang R. Development and validation of an HPLC-MS/MS analytical method for quantitative analysis of TCBA-TPQ, a novel anticancer makaluvamine analog, and application in a pharmacokinetic study in rats. Chinese Journal of Natural Medicines, 2015, 13(7): 554–560

67
Matsumoto S S, Haughey H M, Schmehl D M, Venables D A, Ireland C M, Holden J A, Barrows L R. Makaluvamines vary in ability to induce dosedependent DNA cleavage via topoisomerase II interaction. Anti-Cancer Drugs, 1999, 10(1): 39–45

DOI

68
Venables D A, Concepción G P, Matsumoto S S, Barrows L R, Ireland C M. Makaluvamine N: A New Pyrroloiminoquinone from Zyzzya fuliginosa. Journal of Natural Products, 1997, 60(4): 408–410

DOI

69
Dijoux M G, Schnabel P C, Hallock Y F, Boswell J L, Johnson T R, Wilson J A, Ireland C M, van Soest R, Boyd M R, Barrows L R, CardellinaII J H. Antitumor activity and distribution of pyrroloiminoquinones in the sponge genus Zyzzya. Bioorganic & Medicinal Chemistry, 2005, 13(21): 6035–6044

DOI

70
Wang Z, Sun Y. Targeting p53 for novel anticancer therapy. Translational Oncology, 2010, 3(1): 1–12

71
Levine A J. p53, the cellular gatekeeper for growth and division. Cell, 1997, 88(3): 323–331

DOI

72
Rayburn E, Zhang R, He J, Wang H. MDM2 and human malignancies: Expression, clinical pathology, prognostic markers, and implications for chemotherapy. Current Cancer Drug Targets, 2005, 5(1): 27–42

DOI

73
Zhang Z, Zhang R. p53-independent activities of MDM2 and their relevance to cancer therapy. Current Cancer Drug Targets, 2005, 5(1): 9–20

DOI

74
Oliner J D, Pietenpol J A, Thiagalingam S, Gyuris J, Kinzler K W, Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature, 1993, 362(6423): 857–860

DOI

75
Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature, 387(6630): 296–299

76
Bouska A, Lushnikova T, Plaza S, Eischen C M. Mdm2 promotes genetic instability and transformation independent of p53. Molecular and Cellular Biology, 2008, 28(15): 4862–4874

DOI

77
Zhang R, Wang H. MDM2 oncogene as a novel target for human cancer therapy. Current Pharmaceutical Design, 2000, 6(4): 393–416

DOI

78
Zhang R, Wang H, Agrawal S. Novel antisense anti-MDM2 mixed-backbone oligonucleotides: Proof of principle, in vitro and in vivo activities, and mechanisms. Current Cancer Drug Targets, 2005, 5(1): 43–50

DOI

79
Rayburn E R, Ezell S J, Zhang R. Recent advances in validation of MDM2 oncogene as a molecular target for cancer prevention and therapy. Anti-cancer Agents in Medicinal Chemistry, 2009, 9(8): 882–903

DOI

80
Nag S, Qin J J, Srivenugopal K, Wang M H, Zhang R. The MDM2-p53 pathway revisited. Journal of Biomedical Research, 2013, 27(4): 254–271

DOI

81
Nag S, Zhang X, Srivenugopal K S, Wang M H, Wang W, Zhang R. Targeting MDM2-p53 interaction for cancer therapy: Are we there yet? Current Medicinal Chemistry, 2014, 21(5): 553–574

DOI

82
Chen L, Agrawal S, Zhou W, Zhang R, Chen J. Synergistic activation of p53 by inhibition of MDM2 expression and DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(1): 195–200

DOI

83
Wang H, Nan L, Yu D, Agrawal S, Zhang R. Antisense anti-MDM2 oligonucleotides as a novel therapeutic approach to human breast cancer: In vitro and in vivo activities and mechanisms. Clinical Cancer Research, 2001, 7(11): 3613–3624

84
Wang H, Nan L, Yu D, Lindsey J R, Agrawal S, Zhang R. Anti-tumor efficacy of a novel antisense anti-mdm2 mixed-backbone oligonucleotide in human colon cancer models: p53-dependent and p53-independent mechanisms. Molecular Medicine (Cambridge, Mass.), 2002, 8(4): 185–199

85
Zhang Z, Li M, Wang H, Agrawal S, Zhang R. Antisense therapy targeting MDM2 oncogene in prostate cancer: Effects on proliferation, apoptosis, multiple gene expression, and chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(20): 11636–11641

DOI

86
Zhang Z, Wang H, Prasad G, Li M, Yu D, Bonner J, Agrawal S, Zhang R. Radiosensitization by antisense anti-MDM2 mixed-backbone oligonucleotide in in vitro and in vivo human cancer models. Clinical Cancer Research, 2004, 10(4): 1263–1273

DOI

87
Zhang Z, Wang H, Li M, Rayburn E, Agrawal S, Zhang R. Novel MDM2 p53-independent functions identified through RNA silencing technologies. Annals of the New York Academy of Sciences, 2005, 1058(1): 205–214

DOI

88
Wang W, Qin J J, Voruganti S, Wang M H, Sharma H, Patil S, Zhou J, Wang H, Mukhopadhyay D, Buolamwini J K, Zhang R. Identification of a new class of MDM2 inhibitor that inhibits growth of orthotopic pancreatic tumors in mice. Gastroenterology, 2014, 147(4): 893–902

DOI

89
Nag S, Qin J J, Buolamwini J K, Wang W, Zhang R. A quantitative LC-MS/MS method for determination of SP-141, a novel pyrido[b]indole anticancer agent, and its application to a mouse PK study. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 2014, 969: 235–240

DOI

90
Wang W, Qin J J, Voruganti S, Srivenugopal K S, Nag S, Patil S, Sharma H, Wang M H, Buolamwini J K, Zhang R. A pyrido[b]indole MDM2 inhibitor, SP-141, exerts potent therapeutic effects in breast cancer models. Nature Communications, 2014, 5: 5086

DOI

91
Nag S, Qin J J, Voruganti S, Wang M H, Sharma H, Patil S, Buolamwini J K, Wang W, Zhang R. Development and validation of a rapid HPLC method for quantitation of SP-141, a novel pyrido[b]indole anticancer agent, and an initial pharmacokinetic study in mice. Biomedical Chromatography, 2015, 29(5): 654–663

DOI

92
Wang S, Sun W, Zhao Y, McEachern D, Meaux I, Barrière C, Stuckey J A, Meagher J L, Bai L, Liu L, Hoffman-Luca C G, Lu J, Shangary S, Yu S, Bernard D, Aguilar A, Dos-Santos O, Besret L, Guerif S, Pannier P, Gorge-Bernat D, Debussche L. SAR405838: An optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression. Cancer Research, 2014, 74(20): 5855–5865

DOI

93
Zhang B, Golding B T, Hardcastle I R. Small-molecule MDM2-p53 inhibitors: recent advances. Future Medicinal Chemistry, 2015, 7(5): 631–645

DOI

94
Lv P C, Sun J, Zhu H L. Recent Advances of p53-MDM2 Small Molecule Inhibitors (2011-Present). Current Medicinal Chemistry, 2015, 22(5): 618–626

DOI

95
Qin J J, Nag S A, Voruganti S, Wang W, Zhang R. Natural product MDM2 inhibitors: Anticancer activity and mechanisms of action. Current Medicinal Chemistry, 2012, 19(33): 5705–5725

DOI

96
Li M, Zhang Z, Hill D, Chen X, Wang H, Zhang R. Genistein, a dietary isoflavone, down-regulates MDM2 oncogene at both transcriptional and post-translational levels. Cancer Research, 2005, 65(18): 8200–8208

DOI

97
Li M, Zhang Z, Hill D, Wang H, Zhang R. Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Research, 2007, 67(5): 1988–1996

DOI

98
Hou J, Wang D, Zhang R, Wang H. Experimental therapy of hepatoma with artemisinin and its derivatives: In vitro and in vivo activity, chemosensitization, and mechanisms of action. Clinical Cancer Research, 2008, 14(17): 5519–5530

DOI

99
Chen T, Li M, Zhang R, Wang H. Dihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapy. Journal of Cellular and Molecular Medicine, 2009, 13(7): 1358–1370

DOI

100
Wang W, Wang H, Rayburn E, Zhao Y, Hill D, Zhang R. 20(S)-25-methoxyl-dammarane-3β, 12β, 20-triol, a novel natural product for prostate cancer therapy: Activity in vitro and in vivo and mechanisms of action. British Journal of Cancer, 2008, 98(4): 792–802

DOI

101
Wang W, Rayburn E R, Hao M, Zhao Y, Hill D L, Zhang R, Wang H. Experimental therapy of prostate cancer with novel natural product anti-cancer ginsenosides. Prostate, 2008, 68(8): 809–819

DOI

102
Wang W, Rayburn E R, Hang J, Zhao Y, Wang H, Zhang R. Anti-lung cancer effects of novel ginsenoside 25-OCH3-PPD. Lung Cancer, 2009, 65(3): 306–311

DOI

103
Wang W, Rayburn E R, Zhao Y, Wang H, Zhang R. Novel ginsenosides 25-OH-PPD and 25-OCH3-PPD as experimental therapy for pancreatic cancer: Anticancer activity and mechanisms of action. Cancer Letters, 2009, 278(2): 241–248

DOI

104
Nag S A, Qin J J, Wang W, Wang M, Wang H, Zhang R. Ginsenosides as anticancer agents: In vitro and in vivo activities, structure-activity relationships, and molecular mechanisms of action. Frontiers in Pharmacology, 2012, 3: 25

DOI

105
Wang W, Zhang X, Qin J J, Voruganti S, Nag S A, Wang M H, Wang H, Zhang R. Natural product ginsenoside 25-OCH3-PPD inhibits breast cancer growth and metastasis through down-regulating MDM2. PLoS One, 2012, 7(7): e41586

DOI

106
Yu J, Nag S A, Zhang R. Advances in translational pharmacological investigations in identifying and validating molecular targets of natural product anticancer agents. Current Cancer Drug Targets, 2013, 13(5): 596–609

DOI

107
Voruganti S, Qin J J, Sarkar S, Nag S, Walbi I A, Wang S, Zhao Y, Wang W, Zhang R. Oral nano-delivery of anticancer ginsenoside 25-OCH3-PPD, a natural inhibitor of the MDM2 oncogene: Nanoparticle preparation, characterization, in vitro and in vivo anti-prostate cancer activity, and mechanisms of action. Oncotarget, 2015, 6(25): 21379–21394

DOI

108
Qin J J, Wang W, Voruganti S, Wang H, Zhang W D, Zhang R. Identification of a new class of natural product MDM2 inhibitor: In vitro and in vivo anti-breast cancer activities and target validation. Oncotarget, 2015, 6(5): 2623–2640

DOI

109
Qin J J, Wang W, Voruganti S, Wang H, Zhang W D, Zhang R. Inhibiting NFAT1 for breast cancer therapy: New insights into the mechanism of action of MDM2 inhibitor JapA. Oncotarget, 2015, 6(32): 33106–33119

Outlines

/