RESEARCH ARTICLE

Enhanced production of β-glucuronidase from Penicillium purpurogenum Li-3 by optimizing fermentation and downstream processes

  • Shen Huang 1,2 ,
  • Xudong Feng , 1 ,
  • Chun Li 1
Expand
  • 1. School of Life Science, Beijing Institute of Technology, Beijing 100081, China
  • 2. College of Food and Biological Engineering, Zhengzhou University of Light Industry, Henan 450002, China

Received date: 08 Jul 2015

Accepted date: 10 Oct 2015

Published date: 26 Nov 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

β-Glucuronidase from Penicillium purpurogenum Li-3 (PGUS) can efficiently hydrolyze glycyrrhizin into the more valuable glycyrrhetic acid monoglucuronide. However, a low productivity of PGUS and the lack of an effective separation strategy have significantly limited its industrial applications. Therefore, the production of PGUS has been improved by optimizing both the fermentation and purification strategies. A two-stage fermentation strategy was developed where PGUS was first grown with glucose and then PGUS was produced in the presence of glycyrrhizin as an inducer. By using this strategy, the biomass was increased 1.5 times and the PGUS activity increased 5.4 times compared to that when glycyrrhizin was used as the sole carbon source. The amount of PGUS produced was increased another 16.6% when the fermentation was expanded to a 15-L fermenter. An effective protocol was also established to purify the PGUS using a sequential combination of hydrophobic, strong anion-exchange and gel filtration chromatography. This protocol had a recovery yield of 6% and gave PGUS that was 39 times purer than the crude PGUS. The purified PGUS had a specific activity of 350 U·mg−1.

Cite this article

Shen Huang , Xudong Feng , Chun Li . Enhanced production of β-glucuronidase from Penicillium purpurogenum Li-3 by optimizing fermentation and downstream processes[J]. Frontiers of Chemical Science and Engineering, 2015 , 9(4) : 501 -510 . DOI: 10.1007/s11705-015-1544-0

Acknowledgments

This work was financially supported by the National Science Foundation of China (Grant. Nos. 21506011 and 21425624), and China Postdoctoral Science Foundation funded project (No. 2015M570038).
1
Makino T, Okajima K, Uebayashi R, Ohtake N, Inoue K, Mizukami H. 3-Monoglucuronyl-glycyrrhretinic acid is a substrate of organic anion transporters expressed in tubular epithelial cells and plays important roles in licorice-induced pseudoaldosteronism by inhibiting 11 beta-hydroxysteroid dehydrogenase 2. Journal of Pharmacology and Experimental Therapeutics, 2012, 342(2): 297–304

DOI

2
Seki H, Ohyama K, Sawai S, Mizutani M, Ohnishi T, Sudo H, Akashi T, Aoki T, Saito K, Muranaka T. Licorice beta-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(37): 14204–14209

DOI

3
Akao T. Differences in the metabolism of glycyrrhizin, glycyrrhetic acid and glycyrrhetic acid monoglucuronide by human intestinal flora. Biological & Pharmaceutical Bulletin, 2000, 23(12): 1418–1423

DOI

4
Matsui S, Matsumoto H, Sonoda Y, Ando K, Aizu-Yokota E, Sato T, Kasahara T. Glycyrrhizin and related compounds down-regulate production of inflammatory chemokines IL-8 and eotaxin 1 in a human lung fibroblast cell line. International Immunopharmacology, 2004, 4(13): 1633–1644

DOI

5
Doll R, Hill I D, Hutton C, Underwood D J V II. Clinical trial of a triterpenoid liquorice compound in gastric and duodenal ulcer. Lancet, 1962, 280(7260): 793–796

DOI

6
Pompei R, Flore O, Marccialis M A, Pani A, Loddo B. Glycyrrhizic acid inhibits virus growth and inactivates virus-particles. Nature, 1979, 281(5733): 689–690

DOI

7
Shiota G, Harada K, Ishida M, Tomie Y, Okubo M, Katayama S, Ito H, Kawasaki H. Inhibition of hepatocellular carcinoma by glycyrrhizin in diethylnitrosamine-treated mice. Carcinogenesis, 1999, 20(1): 59–63

DOI

8
Isbrucker R A, Burdock G A. Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regulatory Toxicology and Pharmacology, 2006, 46(3): 167–192

DOI

9
Feng S J, Li C, Xu X L, Wang X Y. Screening strains for directed biosynthesis of beta-D-mono-glucuronide-glycyrrhizin and kinetics of enzyme production. Journal of Molecular Catalysis. B, Enzymatic, 2006, 43(1−4): 63–67

DOI

10
Zou S P, Zhou J J, Kaleem I, Xie L P, Liu G Y, Li C. Preparative enrichment and separation of glycyrrhetinic acid monoglucuronide from fermentation broths with macroporous resins. Separation Science and Technology, 2012, 47(7): 1055–1062

DOI

11
Zou S P, Liu G Y, Kaleem I, Li C. Purification and characterization of a highly selective glycyrrhizin-hydrolyzing beta-glucuronidase from Penicillium purpurogenum Li-3. Process Biochemistry, 2013, 48(2): 358–363

DOI

12
Qi F, Kaleem I, Lv B, Guo X, Li C. Enhancement of recombinant beta-D-glucuronidase production under low-shear modeled microgravity in Pichia pastoris. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2011, 86(4): 505–511

DOI

13
Mizutani K, Kuramoto T, Tamura Y, Ohtake N, Doi S, Nakaura M, Tanaka O. Sweetness of glycyrrhetic acid 3-O-beta-D-monoglucuronide and the related glycosides. Bioscience, Biotechnology, and Biochemistry, 1994, 58(3): 554–555

DOI

14
Park H Y, Park S H, Yoon H K, Han M J, Kim D H. Anti-allergic activity of 18 beta-glycyrrhetinic acid-3-O-beta-D-glucuronide. Archives of Pharmacal Research, 2004, 27(1): 57–60

DOI

15
Maitraie D, Hung C F, Tu H Y, Liou Y T, Wei B L, Yang S C, Wang J P, Lin C N. Synthesis, anti-inflammatory, and antioxidant activities of 18 beta-glycyrrhetinic acid derivatives as chemical mediators and xanthine oxidase inhibitors. Bioorganic & Medicinal Chemistry, 2009, 17(7): 2785–2792

DOI

16
Zou S, Guo S, Kaleem I, Li C. Purification, characterization and comparison of Penicillium purpurogenum beta-glucuronidases expressed in Escherichia coli and Pichia pastoris. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2013, 88(10): 1913–1919

DOI

17
Song X, Jiang Z, Li L, Wu H. Immobilization of β-glucuronidase in lysozyme-induced biosilica particles to improve its stability. Frontiers of Chemical Science and Engineering, 2014, 8(3): 353–361

DOI

18
Kim D H, Jin Y H, Jung E A, Han M J, Kobashi K. Purification and characterization of beta-glucuronidase from Escherichia coli HGU-3, a human intestinal bacterium. Biological & Pharmaceutical Bulletin, 1995, 18(9): 1184–1188

DOI

19
Akao T. Competition in the metabolism of glycyrrhizin with glycyrrhetic acid mono-glucuronide by mixed Eubacterium sp GLH and Ruminococcus sp PO1-3. Biological & Pharmaceutical Bulletin, 2000, 23(2): 149–154

DOI

20
Amin H A S, El-Menoufy H A, El-Mehalawy A A, Mostafa E S. Biosynthesis of glycyrrhetinic acid 3-O-mono-beta-D-glucuronide by free and immobilized Aspergillus terreus beta-D-glucuronidase. Journal of Molecular Catalysis. B, Enzymatic, 2011, 69(1-2): 54–59

DOI

21
Kuramoto T, Ito Y, Oda M, Tamura Y, Kitahata S. Microbial-production of glycyrrhetic acid 3-O-mono-beta-D-glucuronide from glycyrrhizin by Cryptococcus-magnus MG-27. Bioscience, Biotechnology, and Biochemistry, 1994, 58(3): 455–458

DOI

22
Lu D Q, Li H, Dai Y, Ouyang P K. Biocatalytic properties of a novel crude glycyrrhizin hydrolase from the liver of the domestic duck. Journal of Molecular Catalysis. B, Enzymatic, 2006, 43(1−4): 148–152

DOI

23
Bradford M M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1−2): 248–254

DOI

24
Papagianni M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnology Advances, 2004, 22(3): 189–259

DOI

25
Posch A E, Herwig C, Spadiut O. Science-based bioprocess design for filamentous fungi. Trends in Biotechnology, 2013, 31(1): 37–44

DOI

26
Choonia H S, Saptarshi S D, Lele S S. Release of intracellular beta-galactosidase from Lactobacillus acidophilus and L-asparaginase from Pectobacterium carotovorum by high-pressure homogenization. Chemical Engineering Communications, 2013, 200(11): 1415–1424

DOI

27
Liu Y, Pietzsch M, Ulrich J. Purification of L-asparaginase II by crystallization. Frontiers of Chemical Science and Engineering, 2013, 7(1): 37–42

DOI

28
Park H Y, Kim N Y, Han M J, Bae E A, Kim D H. Purification and characterization of two novel beta-D-glucuronidases converting glycyrrhizin to 18 beta-glycyrrhetinic acid-3-O-beta-D-glucuronide from Streptococcus LJ-22. Journal of Microbiology and Biotechnology, 2005, 15(4): 792–799

29
Kuroyama H, Tsutsui N, Hashimoto Y, Tsumuraya Y. Purification and characterization of a beta-glucuronidase from Aspergillus niger. Carbohydrate Research, 2001, 333(1): 27–39

DOI

30
Sakurama H, Kishino S, Uchibori Y, Yonejima Y, Ashida H, Kita K, Takahashi S, Ogawa J. beta-Glucuronidase from Lactobacillus brevis useful for baicalin hydrolysis belongs to glycoside hydrolase family 30. Applied Microbiology and Biotechnology, 2014, 98(9): 4021–4032

DOI

31
Nguyen Q D, Rezessy-Szabo J M, Bhat M K, Hoschke A. Purification and some properties of beta-fructofuranosidase from Aspergillus niger IMI303386. Process Biochemistry, 2005, 40(7): 2461–2466

DOI

Outlines

/