REVIEW ARTICLE

Recent advances in selective acetylene hydrogenation using palladium containing catalysts

  • Alan J. McCue , 1 ,
  • James A. Anderson , 1,2
Expand
  • 1. Surface Chemistry and Catalysis Group, Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, UK
  • 2. Materials and Chemical Engineering Group, School of Engineering, University of Aberdeen, Aberdeen, AB24 3UE, UK

Received date: 31 Mar 2015

Accepted date: 12 May 2015

Published date: 14 Jul 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Recent advances with Pd containing catalysts for the selective hydrogenation of acetylene are described. The overview classifies enhancement of catalytic properties for monometallic and bimetallic Pd catalysts. Activity/selectivity of Pd catalysts can be modified by controlling particle shape/morphology or immobilisation on a support which interacts strongly with Pd particles. In both cases enhanced ethylene selectivity is generally associated with modifying ethylene adsorption strength and/or changes to hydride formation. Inorganic and organic selectivity modifiers (i.e., species adsorbed onto Pd particle surface) have also been shown to enhance ethylene selectivity. Inorganic modifiers such as TiO2 change Pd ensemble size and modify ethylene adsorption strength whereas organic modifiers such as diphenylsulfide are thought to create a surface template effect which favours acetylene adsorption with respect to ethylene. A number of metals and synthetic approaches have been explored to prepare Pd bimetallic catalysts. Examples where enhanced selectivity is observed are generally associated with decreased Pd ensemble size and/or hindering of the ease with which an unselective hydride phase is formed for Pd. A final class of bimetallic catalysts are discussed where Pd is not thought to be the primary reaction site but merely acts as a site where hydrogen dissociation and spillover occurs onto a second metal (Cu or Au) where the reaction takes place more selectively.

Cite this article

Alan J. McCue , James A. Anderson . Recent advances in selective acetylene hydrogenation using palladium containing catalysts[J]. Frontiers of Chemical Science and Engineering, 2015 , 9(2) : 142 -153 . DOI: 10.1007/s11705-015-1516-4

1
Tiedtke D B, Cheung T T P, Leger J, Zisman S A, Bergmeister J J, Delzer G A. In: 13th Ethylene Producers Conference, 2001, 10: 1–21

2
Borodziński A, Bond G C. Selective Hydrogenation of ethyne in ethene—rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catalysis Reviews, 2006, 48(2): 91–144

3
Borodziński A, Bond G C. Selective hydrogenation of ethyne in ethene—rich streams on palladium catalysts. Part 2: Steady—state kinetics and effects of palladium particle size, carbon monoxide, and promoters. Catalysis Reviews, 2008, 50(3): 379–469

4
Nikolaev S A, Zanaveskin I L N, Smirnov V V, Averyanov V A, Zanaveskin K I. Catalytic hydrogenation of alkyne and alkadiene impurities from alkenes. Practical and theoretical aspects. Russian Chemical Reviews, 2009, 78(3): 231–247

5
García-Mota M, Gómez-Díaz J, Novell-Leruth G, Vargas-Fuentes C, Bellarosa L, Bridier B, Pérez-Ramírez J, López N. A density functional theory study of the “mythic” Lindlar hydrogenation catalyst. Theoretical Chemistry Accounts, 2011, 128(4): 663–673

6
Bridier B, Lopez N, Pérez-Ramírez J. Molecular understanding of alkyne hydrogenation for the design of selective catalysts. Dalton Transactions, 2010, 39(36): 8412–8419

7
Segura Y, López N, Pérez-Ramírez J. Origin of the superior hydrogenation selectivity of gold nanoparticles in alkyne+ alkene mixtures: Triple- versus double-bond activation. Journal of Catalysis, 2007, 247(2): 383–386

8
Vilé G, Baudouin D, Remediakis I N, Copéret C, López N, Pérez-Ramírez J. Silver nanoparticles for olefin production: New insights into the mechanistic description of propyne hydrogenation. ChemCatChem, 2013, 5(12): 3750–3759

9
Wehrli J T, Thomas D J, Wainwright M S, Trimm D L, Cant N W. Selective hydrogenation of propyne over supported copper catalysts: Influence of support. Applied Catalysis, 1991, 70(1): 253–262

10
Bridier B, López N, Pérez-Ramírez J. Partial hydrogenation of propyne over copper-based catalysts and comparison with nickel-based analogues. Journal of Catalysis, 2010, 269(1): 80–92

11
Abelló S, Verboekend D, Bridier B, Pérez-Ramírez J. Activated takovite catalysts for partial hydrogenation of ethyne, propyne, and propadiene. Journal of Catalysis, 2008, 259(1): 85–95

12
Trimm D L, Liu I O Y, Cant N W. The selective hydrogenation of acetylene over a Ni/SiO2 catalyst in the presence and absence of carbon monoxide. Applied Catalysis A, General, 2010, 374(1-2): 58–64

13
Trimm D L, Cant N W, Liu I O Y. The selective hydrogenation of acetylene in the presence of carbon monoxide over Ni and Ni-Zn supported on MgAl2O4. Catalysis Today, 2011, 178(1): 181–186

14
Lopez-Sanchez J A, Lennon D. The use of titania- and iron oxide-supported gold catalysts for the hydrogenation of propyne. Applied Catalysis A, General, 2005, 291(1-2): 230–237

15
García-Mota M, Bridier B, Pérez-Ramírez J, López N. Interplay between carbon monoxide, hydrides, and carbides in selective alkyne hydrogenation on palladium. Journal of Catalysis, 2010, 273(2): 92–102

16
Yang B, Burch R, Hardacre C, Headdock G, Hu P. Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on the activity and selectivity of acetylene hydrogenation on Pd surfaces: A density functional theory study. Journal of Catalysis, 2013, 305: 264–276

17
Gabasch H, Hayek K, Klötzer B, Knop-Gericke A, Schlögl R. Carbon incorporation in Pd(111) by adsorption and dehydrogenation of ethene. Journal of Physical Chemistry B, 2006, 110(10): 4947–4952

18
Teschner D, Borsodi J, Wootsch A, Révay Z, Hävecker M, Knop-Gericke A, Jackson S D, Schlögl R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science, 2008, 320(5872): 86–89

19
Teschner D, Borsodi J, Kis Z, Szentmiklósi L, Révay Z, Knop-Gericke A, Schlögl R, Torres D, Sautet P. Role of hydrogen species in palladium-catalyzed alkyne hydrogenation. Journal of Physical Chemistry C, 2010, 114(5): 2293–2299

20
Sá J, Arteaga G D, Daley R A, Bernardi J, Anderson J A. Factors influencing hydride formation in a Pd/TiO2 catalyst. Journal of Physical Chemistry B, 2006, 110(34): 17090–17095

21
Schauermann S, Nilius N, Shaikhutdinov S, Freund H J. Nanoparticles for heterogeneous catalysis: New mechanistic insights. Accounts of Chemical Research, 2013, 46(8): 1673–1681

22
Ludwig W, Savara A, Madix R J, Schauermann S, Freund H J. Subsurface hydrogen diffusion into Pd nanoparticles: Role of low-coordinated surface sites and facilitation by carbon. Journal of Physical Chemistry C, 2012, 116(5): 3539–3544

23
Ludwig W, Savara A, Dostert K H, Schauermann S. Olefin hydrogenation on Pd model supported catalysts: New mechanistic insights. Journal of Catalysis, 2011, 284(2): 148–156

24
Wilde M, Fukutani K, Ludwig W, Brandt B, Fischer J H, Schauermann S, Freund H J. Influence of carbon deposition on the hydrogen distribution in Pd nanoparticles and their reactivity in olefin hydrogenation. Angewandte Chemie International Edition, 2008, 47(48): 9289–9293

25
Armbrüster M, Behrens M, Cinquini F, Föttinger K, Grin Y, Haghofer A, Klötzer B, Knop-Gericke A, Lorenz H, Ota A, Penner S, Prinz J, Rameshan C, Révay Z, Rosenthal D, Rupprechter G, Teschner D, Torres D, Wagner R, Widmer R, Wowsnick G. How to control the selectivity of palladium-based catalysts in hydrogenation reactions: The role of subsurface chemistry. ChemCatChem, 2012, 4(8): 1048–1063

26
Khan N A, Shaikhutdinov S, Freund H J. Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts. Catalysis Letters, 2006, 108(3-4): 159–164

27
Johnson M M, Walker D W, Nowack G P. U SPatent, 4404124A, 1983-<month>09</month>-<day>13</day>

28
Lim B, Jiang M, Tao J, Camargo P H C, Zhu Y, Xia Y. Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Advanced Functional Materials, 2009, 19(2): 189–200

29
Yarulin A E, Crespo-Quesada R M, Egorova E V, Kiwi-Minsker LL. Structure sensitivity of selective acetylene hydrogenation over the catalysts with shape-controlled palladium nanoparticles. Kinetics and Catalysis, 2012, 53(2): 253–261

30
Crespo-Quesada M, Andanson J M, Yarulin A, Lim B, Xia Y, Kiwi-Minsker L. UV-ozone cleaning of supported poly(vinylpyrrolidone)-stabilized palladium nanocubes: Effect of stabilizer removal on morphology and catalytic behavior. Langmuir, 2011, 27(12): 7909–7916

31
Kim S K, Kim C, Lee J H, Kim J, Lee H, Moon S H. Performance of shape-controlled Pd nanoparticles in the selective hydrogenation of acetylene. Journal of Catalysis, 2013, 306: 146–150

32
He Y F, Feng J T, Du Y Y, Li D Q. Controllable synthesis and acetylene hydrogenation performance of supported pd nanowire and cuboctahedron catalysts. ACS Catalysis, 2012, 2(8): 1703–1710

33
Benavidez A D, Burton P D, Nogales J L, Jenkins A R, Ivanov S A, Miller J T, Karim A M, Datye A K. Improved selectivity of carbon-supported palladium catalysts for the hydrogenaiton of acetylene in excess ethylene. Applied Catalysis A, General, 2014, 482: 108–115

34
Burton P D, Boyle T J, Datye A K. Facile. Surfactant-free synthesis of Pd nanoparticles for heterogeneous catalysts. Journal of Catalysis, 2011, 280(2): 145–149

35
Boudart M, Hwang H S. Solubility of hydrogen in small particles of palladium. Journal of Catalysis, 1975, 39(1): 44–52

36
Gulyaeva Y K, Kaichev V V, Zaikovskii V I, Kovalyov E V, Suknev A P, Bal’zhinimaev B S. Selective hydrogenation of acetylene over novel Pd/fiberglass catalysts. Catalysis Today, 2015, 245: 139–146

37
Riyapan S, Boonyongmaneerat Y, Mekasuwandumrong O, Yoshida H, Fujita S I, Arai M, Panpranot J. Improved catalytic performance of Pd/TiO2 in the selective hydrogenation of acetylene by using H2-treated sol-gel TiO2. Journal of Molecular Catalysis A Chemical, 2014, 383-384: 182–187

38
Riyapan S, Boonyongmaneerat Y, Mekasuwandumrong O, Praserthdam P, Panpranot J. Effect of surface Ti3+ on the sol-gel derived TiO2 in the selective acetylene hydrogenation on Pd/TiO2 catalysts. Catalysis Today, 2014, 245: 134–138

39
Li Y, Jang B W L. Non-thermal RF plasma effects on surface properties of Pd/TiO2 catalysts for selective hydrogenation of acetylene. Applied Catalysis A, General, 2011, 392(1-2): 173–179

40
Zhu B, Jang B W L. Insights into surface properties of non-thermal RF plasmas treated Pd/TiO2 in acetylene hydrogenation. Journal of Molecular Catalysis A, Chemical, 2014, 395: 137–144

41
Kim W J, Moon S H. Modified Pd catalysts for the selective hydrogenation of acetylene. Catalysis Today, 2012, 185(1): 2–16

42
Shin E W, Choi C H, Chang K S, Na Y H, Moon S H. Properties of Si-modified Pd catalyst for selective hydrogenation of acetylene. Catalysis Today, 1998, 44(3): 137–143

43
Shin E W, Kang J H, Kim W J, Park J D, Moon S H. Performance of Si-modified Pd catalyst in acetylene hydrogenation: The origin of the ethylene selectivity improvement. Applied Catalysis A, General, 2002, 223(1-2): 161–172

44
Ahn I Y, Kim W J, Moon S H. Performance of La2O3- or Nb2O5-added Pd/SiO2 catalysts in acetylene hydrogenation. Applied Catalysis A, General, 2006, 308: 75–81

45
Kim W J, Ahn I Y, Lee J H, Moon S H. Properties of Pd/SiO2 catalyst doubly promoted with La oxide and Si for acetylene hydrogenation. Catalysis Communications, 2012, 24: 52–55

46
McKenna F M, Anderson J A. Selectivity enhancement in acetylene hydrogenation over diphenyl sulphide-modified Pd/TiO2 catalysts. Journal of Catalysis, 2011, 281(2): 231–240

47
McCue A J, Anderson J A. Sulfur as a catalyst promoter or selectivity modifier in heterogeneous catalysis. Catalysis Science & Technology, 2014, 4(2): 272–294

48
McKenna F M, Wells R P K, Anderson J A. Enhanced selectivity in acetylene hydrogenation by ligand modified Pd/TiO2 catalysts. Chemical Communications, 2011, 47(8): 2351–2353

49
McKenna F M, Mantarosie L, Wells R P K, Hardacre C, Anderson J A. Selective hydrogenation of acetylene in ethylene rich feed streams at high pressure over ligand modified Pd/TiO2. Catalysis Science & Technology, 2012, 2(3): 632–638

50
McCue A J, McKenna F M, Anderson J A. Triphenylphosphine: A ligand for heterogeneous catalysis too? Selectivity enhancement in acetylene hydrogenation over modified Pd/TiO2 catalyst. Catalysis Science & Technology, 2015, 5(4): 2449–2459

51
Han Y, Peng D, Xu Z, Wan H, Zheng S, Zhu D. TiO2 supported Pd@Ag as highly selective catalysts for hydrogenation of acetylene in excess ethylene. Chemical Communications, 2013, 49(75): 8350–8352

52
Zhang Y, Diao W, Williams C T, Monnier J R. Selective hydrogenation of acetylene in excess ethylene using Ag- and Au-Pd/SiO2 bimetallic catalysts prepared by electroless deposition. Applied Catalysis A, General, 2014, 469: 419–426

53
Ma C, Du Y, Feng J, Cao X, Yang J, Li D. Fabrication of supported PdAu nanoflower catalyst for partial hydrogenation of acetylene. Journal of Catalysis, 2014, 317: 263–271

54
Cherkasov N, Ibhadon A O, McCue A J, Anderson J A, Johnston S K. Palladium-bismuth intermetallic and surface-poisoned catalysts for the semi-hydrogenation of 2-methyl-3-butyn-2-ol. Applied Catalysis A, General, 2015, 497: 22–30

55
Osswald J, Giedigkeit R, Jentoft R E, Armbrüster M, Girgsdies F, Kovnir K, Ressler T, Grin Y, Schlögl R. Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene Part 1: Preparation and structural investigation under reaction conditions. Journal of Catalysis, 2008, 258(1): 210–218

56
Osswald J, Kovnir K, Armbrüster M, Giedigkeit R, Jentoft R E, Wild U, Grin Y, Schlögl R. Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene. Part II: Surface characterization and catalytic performance. Journal of Catalysis, 2008, 258(1): 219–227

57
Friedrich M, Villaseca S A, Szentmiklósi L, Teschner D, Armbrüster M. Order-induced selectivity increase of Cu60Pd40 in the semi-hydrogenation of acetylene. Materials, 2013, 6(7): 2958–2977

58
Kim S K, Lee J H, Ahn I Y, Kim W J, Moon S H. Performance of Cu-promoted Pd catalysts prepared by adding Cu using a surface redox method in acetylene hydrogenation. Applied Catalysis A, General, 2011, 401(1-2): 12–19

59
Tierney H L, Baber A E, Kitchin J R, Sykes E C H. Hydrogen dissociation and spillover on individual isolated palladium atoms. Physical Review Letters, 2009, 103(24): 246102–246104

60
Kyriakou G, Boucher M B, Jewell A D, Lewis E A, Lawton T J, Baber A E, Tierney H L, Flytzani-Stephanopoulos M, Sykes E C H. Isolated metal atom geomretries as a strategy for selective heterogeneous hydrogenations. Science, 2012, 335(6073): 1209–1212

61
Boucher M B, Zugic B, Cladaras G, Kammert J, Marcinkowski M D, Lawton T J, Sykes E C H, Flytzani-Stephanopoulos M. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions. Physical Chemistry Chemical Physics, 2013, 15(29): 12187–12196

62
McCue A J, McRitchie C J, Shepherd A M, Anderson J A. Cu/Al2O3 catalysts modified with Pd for selective acetylene hydrogenation. Journal of Catalysis, 2014, 319: 127–135

63
Fu Q, Luo Y. Active sites of Pd-doped flat and stepped Cu(111) surfaces for H2 dissociation in heterogeneous catalytic hydrogenation. ACS Catalysis, 2013, 3(6): 1245–1252

64
McCue A J, Shepherd A M, Anderson J A. Optimisation of preparation method for Pd coped Cu/Al2O3 catalysts for selective acetylene hydrogenation. Catalysis Science & Technology, 2015, 5(5): 2880–2890

65
Pei G X, Liu X Y, Wang A, Li L, Huang Y, Zhang T, Lee J W, Jang B W L, Mou C Y. Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New Journal of Chemistry, 2014, 38(5): 2043–2051

Outlines

/