RESEARCH ARTICLE

High-level expression of recombinant IgG1 by CHO K1 platform

  • Ningning Xu 1 ,
  • Jianfa Ou 1 ,
  • Al-Karim (Al) Gilani 1 ,
  • Lufang Zhou , 2 ,
  • Margaret Liu 1
Expand
  • 1. Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35294, USA
  • 2. Departments of Medicine and Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA

Received date: 03 May 2015

Accepted date: 10 Aug 2015

Published date: 30 Sep 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The Chinese Hamster Ovary (CHO K1) cell was used to express a targeted anti-cancer monoclonal antibody by optimizing the platform of the construction of production cell line in this study. The adherent CHO K1 was first adapted to suspension culture in chemical defined medium. Then the glutamine synthetase (GS) vector was applied to construct a single plasmid to overexpress a monoclonal antibody IgG1. Post transfection, the production of cell pool was optimized by glutamine-free selection and amplification using various concentrations of methionine sulfoximine. The best cell pool of CHO K1/IgG1 was used to screen the top single clone using the limiting dilution cloning. Finally, a high IgG1 production of 780 mg/L was obtained from a batch culture. This study demonstrated that the construction of high producing cell line, from gene to clone, could be completed within six month and the gene amplification improved protein production greatly.

Cite this article

Ningning Xu , Jianfa Ou , Al-Karim (Al) Gilani , Lufang Zhou , Margaret Liu . High-level expression of recombinant IgG1 by CHO K1 platform[J]. Frontiers of Chemical Science and Engineering, 2015 , 9(3) : 376 -380 . DOI: 10.1007/s11705-015-1531-5

Acknowledgements

This work was supported by RGC fund from The University of Alabama and the BRIGE grant (No. 1342390 and IIP-1026648) from the National Science Foundation.
1
Leone-Bay A. Next-generation protein therapeutics summit conference report. Therapeutic Delivery, 2011, 2(10): 1233–1234

2
Leader B, Baca Q J, Golan D E. Protein therapeutics: A summary and pharmacological classification. National Review, 2008, 7(1): 21–39

3
Zhou L, Xu N, Sun Y, Liu X M. Targeted biopharmaceuticals for cancer treatment. Cancer Letters, 2014, 352(2): 145–151

4
Edelman G M. Antibody structure and molecular immunology. Science, 1973, 180(4088): 830–840

5
Chames P, Regenmortel M V, Weiss E, Baty D. Therapeutic antibodies: Successes, limitations and hopes for the future. British Journal of Pharmacology, 2009, 157: 220–233

6
Butler M, Spearman M. The choice of mammalian cell host and possibilities for glycosylation engineering. Current Opinion in Biotechnology, 2014, 30: 107–112

7
Zhang P, Chan K F, Haryadi R, Bardor M, Song Z. CHO glycosylation mutants as potential host cells to produce therapeutic proteins with enhanced efficacy. Advances in Biochemical Engineering/Biotechnology, 2013, 131: 63–87

8
Lai T, Yang Y, Ng S K. Advances in Mammalian cell line development technologies for recombinant protein production. Pharmaceuticals, 2013, 6(5): 579–603

9
Omasa T, Onitsuka M, Kim W D. Cell engineering and cultivation of Chinese Hamster Ovary (CHO) cells. Current Pharmaceutical Biotechnology, 2010, 11(3): 233–240

10
Lewis N E, Liu X, Li Y, Nagarajan H, Yerganian G, O’Brien E, Bordbar A, Roth A M, Rosenbloom J, Bian C, Xie M, Chen W, Li N, Baycin-Hizal D, Latif H, Forster J, Betenbaugh M J, Famili I, Xu X, Wang J, Palsson B O. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nature Biotechnology, 2013, 31(8): 759–765

11
Florian M. Wurm. CHO quasispecies—Implications for manufacturing processes. Processes, 2013, 1: 296–311

12
Cruz Edmonds M C, Tellers M, Chan C, Salmon P, Robinson D K, Markusen J. Development of transfection and high-producer screening protocols for the CHOK1SV cell system. Molecular Biotechnology, 2006, 34(2): 179–190

13
Xu X, Nagarajan H, Lewis N E, Pan S, Cai Z, Liu X, Chen W, Xie M, Wang W, Hammond S, Andersen M R, Neff N, Passarelli B, Koh W, Fan H C, Wang J, Gui Y, Lee K H, Betenbaugh M J, Quake S R, Famili I, Palsson B O, Wang J. The genomic sequence of the Chinese Hamster Ovary (CHO)-K1 cell line. Nature Biotechnology, 2011, 29(8): 735–741

14
Jerums M, Yang X. Optimization of cell culture media. BioProcess International, 2005, Supplement: 38–44

15
Dale L L. Mammalian expression cassette engineering for high-level protein production. BioProcess International, 2006, 4(5): 14–23

16
Kingston R E, Kaufman R J, Bebbington C R, Rolfe M R. Amplification using CHO cell expression vectors. Current Protocols in Molecular Biology. Hoboken: John Wiley & Sons, 2002

17
Porter AJ, Dickson AJ, Racher AJ. Strategies for selecting recombinant CHO cell lines for cGMP manufacturing. Realizing the potential in bioreactors. Biotechnology Progress, 2010, 26(5): 1446–14554

18
Harraghy N, Regamey A, Girod P A, Mermod N. Using matrix attachment regions to improve recombinant protein production. Methods in Molecular Biology, 2012, 801: 93–110

19
Hou J J, Hughes B S, Smede M, Leung K M, Levine K, Rigby S, Gray P P, Munro T P. High-throughput ClonePix FL analysis of mAb-expressing clones using the UCOE expression system. New Biotechnology, 2014, 31(3): 214–220

20
Nair A R, Jinger X, Hermiston T W. Effect of different UCOE-promoter combinations in creation of engineered cell lines for the production of Factor VIII. BMC Research Notes, 2011, 4(178): 1–8

21
Lequin R. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clinical Chemistry, 2005, 51(12): 2415–2418

22
Meng Y G, Liang J, Wong W L, Chisholm V. Green fluorescent protein as a second selectable marker for selection of high producing clones from transfected CHO cells. Gene, 2000, 242: 201–207

23
Clarke J, Porter A, Davis J M. Cloning. Animal cell culture. New York: John Wiley & Sons, 2011, 231–254

Outlines

/