Frontiers of Chemical Science and Engineering >
Design of nanocarriers for efficient cellular uptake and endosomal release of small molecule and nucleic acid drugs: learning from virus
Received date: 14 Sep 2014
Accepted date: 02 Nov 2014
Published date: 14 Jan 2015
Copyright
There are many challenges in developing efficient and target specific delivery systems of small molecule and nucleic acid drugs. Cell membrane presents one of the major barriers for the penetration of hydrophilic macromolecules across the plasma membrane. Nanocarriers have been designed to enhance their cellular uptake via endocytosis but following their cellular uptake, endosomal escape is the rate limiting step which restricts the value associated with the enhanced uptake by nanocarriers. Viruses are an excellent model for efficient cytosolic delivery by nanocarriers. Viruses exploit intracellular cues to release the genome to cytosol. In this review, we first discuss different endocytic uptake pathways and endosomal escape mechanisms. We then summarize the existing tools for studying the intracellular trafficking of nanocarriers. Finally, we highlight the important design elements of recent virus-based nanocarriers for efficient cellular uptake and endosomal escape.
Key words: nanocarrier; cellular uptake; endosomal release; nucleic acid drug
Vaibhav Mundra , Ram I. Mahato . Design of nanocarriers for efficient cellular uptake and endosomal release of small molecule and nucleic acid drugs: learning from virus[J]. Frontiers of Chemical Science and Engineering, 2014 , 8(4) : 387 -404 . DOI: 10.1007/s11705-014-1457-3
1 |
Petros R A, DeSimone J M. Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews. Drug Discovery, 2010, 9(8): 615–627
|
2 |
Kim S, Kim J H, Jeon O, Kwon I C, Park K. Engineered polymers for advanced drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71(3): 420–430
|
3 |
Mahato R I, Rolland A, Tomlinson E. Cationic lipid-based gene delivery systems: Pharmaceutical perspectives. Pharmaceutical Research, 1997, 14(7): 853–859
|
4 |
Mahato R I. Water insoluble and soluble lipids for gene delivery. Advanced Drug Delivery Reviews, 2005, 57(5): 699–712
|
5 |
Al-Dosari M S, Gao X. Nonviral gene delivery: Principle, limitations, and recent progress. The AAPS Journal, 2009, 11(4): 671–681
|
6 |
Mahato R I, Takakura Y, Hashida M. Nonviral vectors for in vivo gene delivery: Physicochemical and pharmacokinetic considerations. Critical Reviews in Therapeutic Drug Carrier Systems, 1997, 14(2): 133–172
|
7 |
Mudhakir D, Harashima H. Learning from the viral journey: How to enter cells and how to overcome intracellular barriers to reach the nucleus. The AAPS Journal, 2009, 11(1): 65–77
|
8 |
Singer S J, Nicolson G L. The fluid mosaic model of the structure of cell membranes. Science, 1972, 175(4023): 720–731
|
9 |
Camenisch G, Alsenz J, van de Waterbeemd H, Folkers G. Estimation of permeability by passive diffusion through caco-2 cell monolayers using the drugs' lipophilicity and molecular weight. European Journal of Pharmaceutical Sciences, 1998, 6(4): 317–324
|
10 |
Hsu V W, Bai M, Li J. Getting active: Protein sorting in endocytic recycling. Nature Reviews. Molecular Cell Biology, 2012, 13(5): 323–328
|
11 |
Babst M. MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Current Opinion in Cell Biology, 2011, 23(4): 452–457
|
12 |
Hatakeyama H, Akita H, Harashima H. A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: A strategy for overcoming the PEG dilemma. Advanced Drug Delivery Reviews, 2011, 63(3): 152–160
|
13 |
Rejman J, Oberle V, Zuhorn I S, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. The Biochemical Journal, 2004, 377(Pt 1): 159–169
|
14 |
Wang J, Li L, Zhou Y. Creep effect on cellular uptake of viral particles. Chinese Science Bulletin, 2014, 59(19): 2277–2281
|
15 |
Mercer J, Schelhaas M, Helenius A. Virus entry by endocytosis. Annual Review of Biochemistry, 2010, 79: 803–833
|
16 |
McMahon H T, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nature Reviews. Molecular Cell Biology, 2011, 12(8): 517–533
|
17 |
Doherty G J, McMahon H T. Mechanisms of endocytosis. Annual Review of Biochemistry, 2009, 78: 857–902
|
18 |
Harush-Frenkel O, Debotton N, Benita S, Altschuler Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochemical and Biophysical Research Communications, 2007, 353(1): 26–32
|
19 |
Rejman J, Bragonzi A, Conese M. Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Molecular Therapy, 2005, 12(3): 468–474
|
20 |
van der Aa M A, Huth U S, Häfele S Y, Schubert R, Oosting R S, Mastrobattista E, Hennink W E, Peschka-Süss R, Koning G A, Crommelin D J. Cellular uptake of cationic polymer-DNA complexes via caveolae plays a pivotal role in gene transfection in COS-7 cells. Pharmaceutical Research, 2007, 24(8): 1590–1598
|
21 |
Le P U, Guay G, Altschuler Y, Nabi I R. Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. The Journal of Biological Chemistry, 2002, 277(5): 3371–3379
|
22 |
Sahay G, Alakhova D Y, Kabanov A V. Endocytosis of nanomedicines. Journal of Controlled Release, 2010, 145(3): 182–195
|
23 |
Pelkmans L, Helenius A. Endocytosis via caveolae. Traffic, 2002, 3(5): 311–320
|
24 |
Parton R G, Howes M T. Revisiting caveolin trafficking: The end of the caveosome. The Journal of Cell Biology, 2010, 191(3): 439–441
|
25 |
Raghava S, Giorda K M, Romano F B, Heuck A P, Hebert D N. SV40 late protein VP4 forms toroidal pores to disrupt membranes for viral release. Biochemistry, 2013, 52(22): 3939–3948
|
26 |
Damm E M, Pelkmans L, Kartenbeck J, Mezzacasa A, Kurzchalia T, Helenius A. Clathrin- and caveolin-1-independent endocytosis: Entry of simian virus 40 into cells devoid of caveolae. The Journal of Cell Biology, 2005, 168(3): 477–488
|
27 |
Kirkham M, Fujita A, Chadda R, Nixon S J, Kurzchalia T V, Sharma D K, Pagano R E, Hancock J F, Mayor S, Parton R G. Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. The Journal of Cell Biology, 2005, 168(3): 465–476
|
28 |
Mercer J, Helenius A. Gulping rather than sipping: Macropinocytosis as a way of virus entry. Current Opinion in Microbiology, 2012, 15(4): 490–499
|
29 |
Mercer J, Helenius A. Virus entry by macropinocytosis. Nature Cell Biology, 2009, 11(5): 510–520
|
30 |
Hewlett L J, Prescott A R, Watts C. The coated pit and macropinocytic pathways serve distinct endosome populations. The Journal of Cell Biology, 1994, 124(5): 689–703
|
31 |
Kerr M C, Lindsay M R, Luetterforst R, Hamilton N, Simpson F, Parton R G, Gleeson P A, Teasdale R D. Visualisation of macropinosome maturation by the recruitment of sorting nexins. Journal of Cell Science, 2006, 119(Pt 19): 3967–3980
|
32 |
Meier O, Boucke K, Hammer S V, Keller S, Stidwill R P, Hemmi S, Greber U F. Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. The Journal of Cell Biology, 2002, 158(6): 1119–1131
|
33 |
Muro S, Wiewrodt R, Thomas A, Koniaris L, Albelda S M, Muzykantov V R, Koval M. A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. Journal of Cell Science, 2003, 116(Pt 8): 1599–1609
|
34 |
Dausend J, Musyanovych A, Dass M, Walther P, Schrezenmeier H, Landfester K, Mailander V. Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. Macromolecular Bioscience, 2008, 8(12): 1135–1143
|
35 |
Youm I, Bazzil J D, Otto J W, Caruso A N, Murowchick J B, Youan B B. Influence of surface chemistry on cytotoxicity and cellular uptake of nanocapsules in breast cancer and phagocytic cells. The AAPS Journal, 2014, 16(3): 550–567
|
36 |
Agarwal R, Singh V, Jurney P, Shi L, Sreenivasan S V, Roy K. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(43): 17247–17252
|
37 |
Fernando L P, Kandel P K, Yu J, McNeill J, Ackroyd P C, Christensen K A. Mechanism of cellular uptake of highly fluorescent conjugated polymer nanoparticles. Biomacromolecules, 2010, 11(10): 2675–2682
|
38 |
Meng H, Yang S, Li Z, Xia T, Chen J, Ji Z, Zhang H, Wang X, Lin S, Huang C, Zhou Z H, Zink J I, Nel A E. Aspect ratio determines the quantity of mesoporous silica nanoparticle uptake by a small GTPase-dependent macropinocytosis mechanism. ACS Nano, 2011, 5(6): 4434–4447
|
39 |
Sahay G, Querbes W, Alabi C, Eltoukhy A, Sarkar S, Zurenko C, Karaqiannis E, Love K, Chen D, Zoncu R, Buqanin Y, Schroeder A, Langer R, Anderson D G. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nature Biotechnology, 2013, 31(7): 653–658
|
40 |
Gilleron J, Querbes W, Zeigerer A, Borodovsky A, Marsico G, Schubert U, Manygoats K, Seifert S, Andree C, Stöter M, Epstein-Barash H, Zhang L, Koteliansky V, Fitzqerald K, Fava E, Bickle M, Kalaidzidis Y, Akinc A, Maier M, Zerial M. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nature Biotechnology, 2013, 31(7): 638–646
|
41 |
Kirkham M, Parton R G. Clathrin-independent endocytosis: New insights into caveolae and non-caveolar lipid raft carriers. Biochimica Et Biophysica Acta, 2005, 1745(3): 273–286
|
42 |
Grassart A, Dujeancourt A, Lazarow P B, Dautry-Varsat A, Sauvonnet N. Clathrin-independent endocytosis used by the IL-2 receptor is regulated by Rac1, Pak1 and Pak2. EMBO Reports, 2008, 9(4): 356–362
|
43 |
Kumari S, Mayor S. ARF1 is directly involved in dynamin-independent endocytosis. Nature Cell Biology, 2008, 10(1): 30–41
|
44 |
Sabharanjak S, Mayor S. Folate receptor endocytosis and trafficking. Advanced Drug Delivery Reviews, 2004, 56(8): 1099–1109
|
45 |
Wang Y, Huang L. A window onto siRNA delivery. Nature Biotechnology, 2013, 31(7): 611–612
|
46 |
Sakai-Kato K, Un K, Nanjo K, Nishiyama N, Kusuhara H, Kataoka K, Kawanishi T, Goda Y, Okuda H. Elucidating the molecular mechanism for the intracellular trafficking and fate of block copolymer micelles and their components. Biomaterials, 2014, 35(5): 1347–1358
|
47 |
Ohno S, Takanashi M, Sudo K, Uedo S, Ishikawa A, Matsuyama N, Fujita K, Mizutani T, Ohgi T, Ochiya T, Gotoh N, Kuroda M. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Molecular Therapy, 2013, 21(1): 185–191
|
48 |
Meier O, Greber U F. Adenovirus endocytosis. The Journal of Gene Medicine, 2003, 5(6): 451–462
|
49 |
Zaitseva E, Yang S T, Melikov K, Pourmal S, Chernomordik L V. Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. PLoS Pathogens, 2010, 6(10): e1001131
|
50 |
Schornberg K, Matsuyama S, Kabsch K, Delos S, Bouton A, White J. Role of endosomal cathepsins in entry mediated by the ebola virus glycoprotein. Journal of Virology, 2006, 80(8): 4174–4178
|
51 |
Kielian M, Rey F A. Virus membrane-fusion proteins: More than one way to make a hairpin. Nature Reviews. Microbiology, 2006, 4(1): 67–76
|
52 |
Dimitrov D S. Virus entry: Molecular mechanisms and biomedical applications. Nature Reviews. Microbiology, 2004, 2(2): 109–122
|
53 |
Earp L J, Delos S E, Park H E, White J M. The many mechanisms of viral membrane fusion proteins. Current Topics in Microbiology and Immunology, 2005, 285: 25–66
|
54 |
Han X, Bushweller J H, Cafiso D S, Tamm L K. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nature Structural Biology, 2001, 8(8): 715–720
|
55 |
Semple S C, Akinc A, Chen J, Sandhu A P, Mui B L, Cho C K, Sah D W, Stebbing D, Crosley E J, Yaworski E, Hafez I M, Dorkin J R, Qin J, Lam K, Rajeev K G, Wong K F, Jeffs L B, Nechev L, Eisenhardt M L, Jayaraman M, Kazem M, Maier M A, Srinivasulu M, Weinstein M J, Chen Q, Alvarez R, Barros S A, De S, Klimuk S K, Borland T, Kosovrasti V, Cantley W L, Tam Y K, Manoharan M, Ciufolini M A, Tracy M A, de Fougerolles A, MacLachlan I, Cullis P R, Madden T D, Hope M J. Rational design of cationic lipids for siRNA delivery. Nature Biotechnology, 2010, 28(2): 172–176
|
56 |
Felgner J H, Kumar R, Sridhar C N, Wheeler C J, Tsai Y J, Border R, Ramsey P, Martin M, Felgner P L. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. The Journal of Biological Chemistry, 1994, 269(4): 2550–2561
|
57 |
Pack D W, Hoffman A S, Pun S, Stayton P S. Design and development of polymers for gene delivery. Nature Reviews. Drug Discovery, 2005, 4(7): 581–593
|
58 |
Midoux P, Pichon C, Yaouanc J J, Jaffres P A. Chemical vectors for gene delivery: A current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. British Journal of Pharmacology, 2009, 157(2): 166–178
|
59 |
Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochimica Et Biophysica Acta, 1999, 1462(1–2): 55–70
|
60 |
Mahat R I, Monera O D, Smith L C, Rolland A. Peptide-based gene delivery. Current Opinion in Molecular Therapeutics, 1999, 1(2): 226–243
|
61 |
Prchla E, Plank C, Wagner E, Blaas D, Fuchs R. Virus-mediated release of endosomal content in vitro: Different behavior of adenovirus and rhinovirus serotype 2. The Journal of Cell Biology, 1995, 131(1): 111–123
|
62 |
Brabec M, Schober D, Wagner E, Bayer N, Murphy R F, Blaas D, Fuchs R. Opening of size-selective pores in endosomes during human rhinovirus serotype 2 in vivo uncoating monitored by single-organelle flow analysis. Journal of Virology, 2005, 79(2): 1008–1016
|
63 |
Suikkanen S, Antila M, Jaatinen A, Vihinen-Ranta M, Vuento M. Release of canine parvovirus from endocytic vesicles. Virology, 2003, 316(2): 267–280
|
64 |
Farr G A, Zhang L G, Tattersall P. Parvoviral virions deploy a capsid-tethered lipolytic enzyme to breach the endosomal membrane during cell entry. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(47): 17148–17153
|
65 |
Kamper N, Day P M, Nowak T, Selinka H C, Florin L, Bolscher J, Hilbig L, Schiller J T, Sapp M. A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes. Journal of Virology, 2006, 80(2): 759–768
|
66 |
Wiethoff C M, Wodrich H, Gerace L, Nemerow G R. Adenovirus protein VI mediates membrane disruption following capsid disassembly. Journal of Virology, 2005, 79(4): 1992–2000
|
67 |
Zhao H, Yung L Y. Addition of TPGS to folate-conjugated polymer micelles for selective tumor targeting. Journal of Biomedical Materials Research. Part A, 2009, 91(2): 505–518
|
68 |
Gao H, Yang Z, Zhang S, Cao S, Shen S, Pang Z, Jiang X. Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Scientific Reports, 2013, 3: 2534
|
69 |
Chen H, Kim S, Li L, Wang S, Park K, Cheng J X. Release of hydrophobic molecules from polymer micelles into cell membranes revealed by forster resonance energy transfer imaging. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(18): 6596–6601
|
70 |
Xu P, Gullotti E, Tong L, Highley C B, Errabelli D R, Hasan T, Cheng J X, Kohane D S, Yeo Y. Intracellular drug delivery by poly(lactic-co-glycolic acid) nanoparticles, revisited. Molecular Pharmaceutics, 2009, 6(1): 190–201
|
71 |
Chen H, Kim S, He W, Wang H, Low P S, Park K, Cheng J X. Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo forster resonance energy transfer imaging. Langmuir, 2008, 24(10): 5213–5217
|
72 |
Nuutila J, Lilius E M. Flow cytometric quantitative determination of ingestion by phagocytes needs the distinguishing of overlapping populations of binding and ingesting cells. Cytometry. Part A : The Journal of the International Society for Analytical Cytology, 2005, 65(2): 93–102
|
73 |
Haas B L, Matson J S, DiRita V J, Biteen J S. Imaging live cells at the nanometer-scale with single-molecule microscopy: Obstacles and achievements in experiment optimization for microbiology. Molecules, 2014, 19(8): 12116–12149
|
74 |
Muller B, Heilemann M. Shedding new light on viruses: Super-resolution microscopy for studying human immunodeficiency virus. Trends in Microbiology, 2013, 21(10): 522–533
|
75 |
Grove J. Super-resolution microscopy: A virus’ eye view of the cell. Viruses, 2014, 6(3): 1365–1378
|
76 |
Perez-Jimenez R, Alonso-Caballero A, Berkovich R, Franco D, Chen M W, Richard P, Badilla C L, Fernandez J M. Probing the effect of force on HIV-1 receptor CD4. ACS Nano, 2014, 8(10): 10313–10320
|
77 |
Welsher K, Yang H. Multi-resolution 3D visualization of the early stages of cellular uptake of peptide-coated nanoparticles. Nature Nanotechnology, 2014, 9(3): 198–203
|
78 |
Sahay G, Batrakova E V, Kabanov A V. Different internalization pathways of polymeric micelles and unimers and their effects on vesicular transport. Bioconjugate Chemistry, 2008, 19(10): 2023–2029
|
79 |
dos Santos T, Varela J, Lynch I, Salvati A, Dawson K A. Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PloS ONE, 2011, 6(9): e24438
|
80 |
Ivanov A I. Pharmacological inhibition of endocytic pathways: Is it specific enough to be useful? Methods in Molecular Biology, 2008, 440: 15–33
|
81 |
Payne C K, Jones S A, Chen C, Zhuang X. Internalization and trafficking of cell surface proteoglycans and proteoglycan-binding ligands. Traffic, 2007, 8(4): 389–401
|
82 |
Torgersen M L, Skretting G, van Deurs B, Sandvig K. Internalization of cholera toxin by different endocytic mechanisms. Journal of Cell Science, 2001, 114(Pt 20): 3737–3747
|
83 |
Massol R H, Larsen J E, Fujinaga Y, Lencer W I, Kirchhausen T. Cholera toxin toxicity does not require functional Arf6- and dynamin-dependent endocytic pathways. Molecular Biology of the Cell, 2004, 15(8): 3631–3641
|
84 |
Rupper A, Lee K, Knecht D, Cardelli J. Sequential activities of phosphoinositide 3-kinase, PKB/aakt, and Rab7 during macropinosome formation in dictyostelium. Molecular Biology of the Cell, 2001, 12(9): 2813–2824
|
85 |
Rappoport J Z, Simon S M. A functional GFP fusion for imaging clathrin-mediated endocytosis. Traffic, 2008, 9(8): 1250–1255
|
86 |
Greber U F, Willetts M, Webster P, Helenius A. Stepwise dismantling of adenovirus 2 during entry into cells. Cell, 1993, 75(3): 477–486
|
87 |
Colin M, Maurice M, Trugnan G, Kornprobst M, Harbottle R P, Knight A, Cooper R G, Miller A D, Capeau J, Coutelle C, Brahimi-Horn M C. Cell delivery, intracellular trafficking and expression of an integrin-mediated gene transfer vector in tracheal epithelial cells. Gene Therapy, 2000, 7(2): 139–152
|
88 |
Drose S, Altendorf K. Bafilomycins and concanamycins as inhibitors of V-ATPases and P-ATPases. The Journal of Experimental Biology, 1997, 200(Pt 1): 1–8
|
89 |
van Rossenberg S M, Sliedregt-Bol K M, Meeuwenoord N J, van Berkel T J, van Boom J H, van der Marel G A, Biessen E A. Targeted lysosome disruptive elements for improvement of parenchymal liver cell-specific gene delivery. The Journal of Biological Chemistry, 2002, 277(48): 45803–45810
|
90 |
Mastrobattista E, Koning G A, van Bloois L, Filipe A C, Jiskoot W, Storm G. Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins. The Journal of Biological Chemistry, 2002, 277(30): 27135–27143
|
91 |
Boeneman K, Delehanty J B, Blanco-Canosa J B, Susumu K, Stewart M H, Oh E, Huston A L, Dawson G, Ingale S, Walters R, Domowicz M, Deschamps J R, Algar W R, Dimaggio S, Manono J, Spillmann C M, Thompson D, Jennings T L, Dawson P E, Medintz I L. Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials. ACS Nano, 2013, 7(5): 3778–3796
|
92 |
El-Sayed A, Khalil I A, Kogure K, Futaki S, Harashima H. Octaarginine- and octalysine-modified nanoparticles have different modes of endosomal escape. The Journal of Biological Chemistry, 2008, 283(34): 23450–23461
|
93 |
Alabi C A, Sahay G, Langer R, Anderson D G. Development of siRNA-probes for studying intracellular trafficking of siRNA nanoparticles. Integrative Biology: Quantitative Biosciences from Nano to Macro, 2013, 5(1): 224–230
|
94 |
Hama S, Akita H, Ito R, Mizuguchi H, Hayakawa T, Harashima H. Quantitative comparison of intracellular trafficking and nuclear transcription between adenoviral and lipoplex systems. Molecular Therapy, 2006, 13(4): 786–794
|
95 |
Mishra S, Webster P, Davis M E. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. European Journal of Cell Biology, 2004, 83(3): 97–111
|
96 |
Ma Y, Nolte R J, Cornelissen J J. Virus-based nanocarriers for drug delivery. Advanced Drug Delivery Reviews, 2012, 64(9): 811–825
|
97 |
Galdiero S, Vitiello M, Falanga A, Cantisani M, Incoronato N, Galdiero M. Intracellular delivery: Exploiting viral membranotropic peptides. Current Drug Metabolism, 2012, 13(1): 93–104
|
98 |
Berry C C. Intracellular delivery of nanoparticles via the HIV-1 tat peptide. Nanomedicine, 2008, 3(3): 357–365
|
99 |
Chugh A, Eudes F, Shim Y S. Cell-penetrating peptides: Nanocarrier for macromolecule delivery in living cells. IUBMB Life, 2010, 62(3): 183–193
|
100 |
Schwarze S R, Ho A, Vocero-Akbani A, Dowdy S F. In vivo protein transduction: Delivery of a biologically active protein into the mouse. Science, 1999, 285(5433): 1569–1572
|
101 |
Torchilin V P, Levchenko T S, Rammohan R, Volodina N, Papahadjopoulos-Sternberg B, D’Souza G G. Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(4): 1972–1977
|
102 |
Mitchell D J, Kim D T, Steinman L, Fathman C G, Rothbard J B. Polyarginine enters cells more efficiently than other polycationic homopolymers. The Journal of Peptide Research, 2000, 56(5): 318–325
|
103 |
Ludtke J J, Zhang G, Sebestyen M G, Wolff J A. A nuclear localization signal can enhance both the nuclear transport and expression of 1 kb DNA. Journal of Cell Science, 1999, 112(Pt 12): 2033–2041
|
104 |
Chen F, Gerion D. Fluorescent CdSe/ZnS Nanocrystal peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Letters, 2004, 4(10): 1827–1832
|
105 |
Kang M J, Park S H, Kang M H, Park M J, Choi Y W. Folic acid-tethered pep-1 peptide-conjugated liposomal nanocarrier for enhanced intracellular drug delivery to cancer cells: Conformational characterization and in vitro cellular uptake evaluation. International Journal of Nanomedicine, 2013, 8: 1155–1165
|
106 |
Hatakeyama H, Ito E, Akita H, Oishi M, Nagasaki Y, Futaki S, Harashima H. A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo. Journal of Controlled Release, 2009, 139(2): 127–132
|
107 |
Milletti F. Cell-penetrating peptides: Classes, origin, and current landscape. Drug Discovery Today, 2012, 17(15–16): 850–860
|
108 |
Bartz R, Fan H, Zhang J, Innocent N, Cherrin C, Beck S C, Pei Y, Momose A, Jadhav V, Tellers D M, Meng F, Crocker L S, Sepp-Lorenzino L, Barnett S F. Effective siRNA delivery and target mRNA degradation using an amphipathic peptide to facilitate pH-dependent endosomal escape. The Biochemical Journal, 2011, 435(2): 475–487
|
109 |
Li W, Nicol F, Szoka F C, Jr. GALA: A designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Advanced Drug Delivery Reviews, 2004, 56(7): 967–985
|
110 |
Wadia J S, Stan R V, Dowdy S F. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nature Medicine, 2004, 10(3): 310–315
|
111 |
Funhoff A M, van Nostrum C F, Lok M C, Fretz M M, Crommelin D J, Hennink W E. Poly(3-guanidinopropyl methacrylate): A novel cationic polymer for gene delivery. Bioconjugate Chemistry, 2004, 15(6): 1212–1220
|
112 |
Oliveira S, van Rooy I, Kranenburg O, Storm G, Schiffelers R M. Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes. International Journal of Pharmaceutics, 2007, 331(2): 211–214
|
113 |
Kwon E J, Bergen J M, Pun S H. Application of an HIV gp41-derived peptide for enhanced intracellular trafficking of synthetic gene and siRNA delivery vehicles. Bioconjugate Chemistry, 2008, 19(4): 920–927
|
114 |
Aoyama Y, Kanamori T, Nakai T, Sasaki T, Horiuchi S, Sando S, Niidome T. Artificial viruses and their application to gene delivery. Size-controlled gene coating with glycocluster nanoparticles. Journal of the American Chemical Society, 2003, 125(12): 3455–3457
|
115 |
Schatz C, Louguet S, le Meins J F, Lecommandoux S. Polysaccharide-block-polypeptide copolymer vesicles: Towards synthetic viral capsids. Angewandte Chemie (International ed. in English), 2009, 48(14): 2572–2575
|
116 |
Bui L, Abbou S, Ibarboure E, Guidolin N, Staedel C, Toulme J J, Lecommandoux S, Schatz C. Encapsidation of RNA-polyelectrolyte complexes with amphiphilic block copolymers: Toward a new self-assembly route. Journal of the American Chemical Society, 2012, 134(49): 20189–20196
|
117 |
Muller K, Nahde T, Fahr A, Muller R, Brusselbach S. Highly efficient transduction of endothelial cells by targeted artificial virus-like particles. Cancer Gene Therapy, 2001, 8(2): 107–117
|
118 |
Wu D T, Roth M J. MLV based viral-like-particles for delivery of toxic proteins and nuclear transcription factors. Biomaterials, 2014, 35(29): 8416–8426
|
119 |
Keswani R K, Pozdol I M, Pack D W. Design of hybrid lipid/retroviral-like particle gene delivery vectors. Molecular Pharmaceutics, 2013, 10(5): 1725–1735
|
120 |
de la Escosura A, Janssen P G, Schenning A P, Nolte R J, Cornelissen J J. Encapsulation of DNA-templated chromophore assemblies within virus protein nanotubes. Angewandte Chemie (International ed. in English), 2010, 49(31): 5335–5338
|
121 |
Ruff Y, Moyer T, Newcomb C J, Demeler B, Stupp S I. Precision templating with DNA of a virus-like particle with peptide nanostructures. Journal of the American Chemical Society, 2013, 135(16): 6211–6219
|
122 |
Li F, Chen Y, Chen H, He W, Zhang Z P, Zhang X E, Wang Q. Monofunctionalization of protein nanocages. Journal of the American Chemical Society, 2011, 133(50): 20040–20043
|
123 |
Murthy N, Robichaud J R, Tirrell D A, Stayton P S, Hoffman A S. The design and synthesis of polymers for eukaryotic membrane disruption. Journal of Controlled Release, 1999, 61(1–2): 137–143
|
124 |
Shima F, Akagi T, Akashi M. Synthesis and preparation of nanoparticles composed of amphiphilic poly(
|
125 |
Lin Y L, Jiang G, Birrell L K, El-Sayed M E. Degradable, pH-sensitive, membrane-destabilizing, comb-like polymers for intracellular delivery of nucleic acids. Biomaterials, 2010, 31(27): 7150–7166
|
126 |
Liu Q, Chen J, Du J. Asymmetrical polymer vesicles with a “stealthy” outer corona and an endosomal-escape-accelerating inner corona for efficient intracellular anticancer drug delivery. Biomacromolecules, 2014, 15(8): 3072–3082
|
127 |
Buerkli C, Lee S H, Moroz E, Stuparu M C, Leroux J C, Khan A. Amphipathic homopolymers for siRNA delivery: Probing impact of bifunctional polymer composition on transfection. Biomacromolecules, 2014, 15(5): 1707–1715
|
128 |
Shima F, Akagi T, Uto T, Akashi M. Manipulating the antigen-specific immune response by the hydrophobicity of amphiphilic poly(gamma-glutamic acid) nanoparticles. Biomaterials, 2013, 34(37): 9709–9716
|
129 |
Henry S M, El-Sayed M E, Pirie C M, Hoffman A S, Stayton P S. pH-responsive poly(styrene-alt-maleic anhydride) alkylamide copolymers for intracellular drug delivery. Biomacromolecules, 2006, 7(8): 2407–2414
|
130 |
Convertine A J, Diab C, Prieve M, Paschal A, Hoffman A S, Johnson P H, Stayton P S. pH-responsive polymeric micelle carriers for siRNA drugs. Biomacromolecules, 2010, 11(11): 2904–2911
|
131 |
Gu W, Jia Z, Truong N P, Prasadam I, Xiao Y, Monteiro M J. Polymer nanocarrier system for endosome escape and timed release of siRNA with complete gene silencing and cell death in cancer cells. Biomacromolecules, 2013, 14(10): 3386–3389
|
132 |
Petersen J, Dandri M, Mier W, Lütgehetmann M, Volz T, von Weizsäcker F, Haberkorn U, Fischer L, Pollok J M, Erbes B, Seitz S, Urban S. Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nature Biotechnology, 2008, 26(3): 335–341
|
133 |
Zhang X, Zhang Q, Peng Q, Zhou J, Liao L, Sun X, Zhang L, Gong T. Hepatitis B virus preS1-derived lipopeptide functionalized liposomes for targeting of hepatic cells. Biomaterials, 2014, 35(23): 6130–6141
|
134 |
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood M J. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology, 2011, 29(4): 341–345
|
135 |
Hwang do W, Son S, Jang J, Youn H, Lee S, Lee D, Lee Y S, Jeong J M, Kim W J, Lee D S. A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA. Biomaterials, 2011, 32(21): 4968–4975
|
/
〈 | 〉 |