REVIEW ARTICLE

Iron oxide nanoparticle-based theranostics for cancer imaging and therapy

  • Xiaoqing REN 1,2 ,
  • Hongwei CHEN 1 ,
  • Victor YANG 1 ,
  • Duxin SUN , 1
Expand
  • 1. Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
  • 2. School of Pharmacy, Fudan University, Shanghai 200433, China

Received date: 30 Mar 2014

Accepted date: 15 Apr 2014

Published date: 11 Oct 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Theranostic platform, which is equipped with both diagnostic and therapeutic functions, is a promising approach in cancer treatment. From various nanotheranostics studied, iron oxide nanoparticles have advantages since IONPs have good biocompatibility and spatial imaging capability. This review is focused on the IONP-based nanotheranostics for cancer imaging and treatment. The most recent progress for applications of IONP nanotheranostics is summarized, which includes IONP-based diagnosis, magnetic resonance imaging (MRI), multimodal imaging, chemotherapy, hyperthermal therapy, photodynamic therapy, and gene delivery. Future perspectives and challenges are also outlined for the potential development of IONP based theranostics in clinical use.

Cite this article

Xiaoqing REN , Hongwei CHEN , Victor YANG , Duxin SUN . Iron oxide nanoparticle-based theranostics for cancer imaging and therapy[J]. Frontiers of Chemical Science and Engineering, 2014 , 8(3) : 253 -264 . DOI: 10.1007/s11705-014-1425-y

1
Tietze R, Lyer S, Dürr S, Alexiou C. Nanoparticles for cancer therapy using magnetic forces. Nanomedicine-UK, 2012, 7(3): 447–457

DOI PMID

2
Zhang Z, Wang J, Chen C. Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Advanced Materials, 2013, 25(28): 3869–3880

DOI PMID

3
Yuan A, Wu J, Tang X, Zhao L, Xu F, Hu Y. Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies. Journal of Pharmaceutical Sciences, 2013, 102(1): 6–28

DOI PMID

4
Menon J U, Jadeja P, Tambe P, Vu K, Yuan B, Nguyen K T. Nanomaterials for photo-based diagnostic and therapeutic applications. Theranostics, 2013, 3(3): 152–166

DOI PMID

5
Ryu J H, Koo H, Sun I C, Yuk S H, Choi K, Kim K, Kwon I C. Tumor-targeting multi-functional nanoparticles for theragnosis: new paradigm for cancer therapy. Advanced Drug Delivery Reviews, 2012, 64(13): 1447–1458

DOI PMID

6
Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Advanced Drug Delivery Reviews, 2010, 62(11): 1064–1079

DOI PMID

7
Ho D, Sun X, Sun S. Monodisperse magnetic nanoparticles for theranostic applications. Accounts of Chemical Research, 2011, 44(10): 875–882

DOI PMID

8
Sun S, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X, Li G. Monodisperse MFe2O4 (M= Fe, Co, Mn) nanoparticles. Journal of the American Chemical Society, 2004, 126(1): 273–279

DOI PMID

9
Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller R N. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 2008, 108(6): 2064–2110

DOI PMID

10
Park J, Lee E, Hwang N M, Kang M, Kim S C, Hwang Y, Park J G, Noh H J, Kim J Y, Park J H, Hyeon T. One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angewandte Chemie International Edition in English,, 2005, 44(19): 2873–2877

DOI PMID

11
Huang J, Zhong X, Wang L, Yang L, Mao H. Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics, 2012, 2(1): 86–102

DOI PMID

12
Huang Y, He S, Cao W, Cai K, Liang X J. Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale, 2012, 4(20): 6135–6149

DOI PMID

13
Wang J, Huang Y, David A E, Chertok B, Zhang L, Yu F, Yang V C. Magnetic nanoparticles for MRI of brain tumors. Current Pharmaceutical Biotechnology, 2012, 13(12): 2403–2416

DOI PMID

14
Psimadas D, Baldi G, Ravagli C, Comes Franchini M, Locatelli E, Innocenti C, Sangregorio C, Loudos G. Comparison of the magnetic, radiolabeling, hyperthermic and biodistribution properties of hybrid nanoparticles bearing CoFe2O4 and Fe3O4 metal cores. Nanotechnology, 2014, 25(2): 025101

DOI PMID

15
Lee S H, Kim B H, Na H B, Hyeon T. Paramagnetic inorganic nanoparticles as T1 MRI contrast agents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6(2): 196–209

DOI PMID

16
Xiao N, Gu W, Wang H, Deng Y, Shi X, Ye L. T1-T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles. Journal of Colloid and Interface Science, 2014, 417: 159–165

DOI PMID

17
Ragheb R R T, Kim D, Bandyopadhyay A, Chahboune H, Bulutoglu B, Ezaldein H, Criscione J M, Fahmy T M. Induced clustered nanoconfinement of superparamagnetic iron oxide in biodegradable nanoparticles enhances transverse relaxivity for targeted theranostics. Magnetic Resonance in Medicine, 2013, 70(6): 1748–1760

DOI PMID

18
Balasubramaniam S, Kayandan S, Lin Y N, Kelly D F, House M J, Woodward R C, St Pierre T G, Riffle J S, Davis R M. Toward design of magnetic nanoparticle clusters stabilized by biocompatible diblock copolymers for T₂-weighted MRI contrast. Langmuir, 2014, 30(6): 1580–1587

DOI PMID

19
Tähkä S, Laiho A, Kostiainen M A. Diblock-copolymer-mediated self-assembly of protein-stabilized iron oxide nanoparticle clusters for magnetic resonance imaging. Chemistry, 2014, 20(10): 2718–2722

DOI PMID

20
Lee G Y, Qian W P, Wang L, Wang Y A, Staley C A, Satpathy M, Nie S, Mao H, Yang L. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano, 2013, 7(3): 2078–2089

DOI PMID

21
Zhang L, Zhong X, Wang L, Chen H, Wang Y A, Yeh J, Yang L, Mao H. T₁-weighted ultrashort echo time method for positive contrast imaging of magnetic nanoparticles and cancer cells bound with the targeted nanoparticles. Journal of Magnetic Resonance Imaging, 2011, 33(1): 194–202

DOI PMID

22
Xie J, Liu G, Eden H S, Ai H, Chen X. Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Accounts of Chemical Research, 2011, 44(10): 883–892

DOI PMID

23
Lin X, Xie J, Niu G, Zhang F, Gao H, Yang M, Quan Q, Aronova M A, Zhang G, Lee S, Leapman R, Chen X. Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Letters, 2011, 11(2): 814–819

DOI PMID

24
Chen Y C, Wen S, Shang S A, Cui Y, Luo B, Teng G J. Magnetic resonance and near-infrared imaging using a novel dual-modality nano-probe for dendritic cell tracking in vivo. Cytotherapy, 2014, 16(5): 699–710

DOI PMID

25
Lee H Y, Li Z, Chen K, Hsu A R, Xu C, Xie J, Sun S, Chen X. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. Journal of Nuclear Medicine, 2008, 49(8): 1371–1379

DOI PMID

26
Xie J, Chen K, Huang J, Lee S, Wang J, Gao J, Li X, Chen X. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials, 2010, 31(11): 3016–3022

DOI PMID

27
Key J, Cooper C, Kim A Y, Dhawan D, Knapp D W, Kim K, Park J H, Choi K, Kwon I C, Park K, Leary J F. In vivo NIRF and MR dual-modality imaging using glycol chitosan nanoparticles. Journal of Controlled Release, 2012, 163(2): 249–255

DOI PMID

28
Sun Z, Huang P, Tong G, Lin J, Jin A, Rong P, Zhu L, Nie L, Niu G, Cao F, Chen X. VEGF-loaded graphene oxide as theranostics for multi-modality imaging-monitored targeting therapeutic angiogenesis of ischemic muscle. Nanoscale, 2013, 5(15): 6857–6866

DOI PMID

29
Key J, Aryal S, Gentile F, Ananta J S, Zhong M, Landis M D, Decuzzi P. Engineering discoidal polymeric nanoconstructs with enhanced magneto-optical properties for tumor imaging. Biomaterials, 2013, 34(21): 5402–5410

DOI PMID

30
Cao C, Wang X, Cai Y, Sun L, Tian L, Wu H, He X, Lei H, Liu W, Chen G, Zhu R, Pan Y. Targeted in vivo imaging of microscopic tumors with ferritin-based nanoprobes across biological barriers. Advanced Materials, 2014, 26(16): 2566–2571

DOI PMID

31
Zhang Y, Zhang B, Liu F, Luo J, Bai J. In vivo tomographic imaging with fluorescence and MRI using tumor-targeted dual-labeled nanoparticles. International Journal of Nanomedicine, 2014, 9: 33–41

PMID

32
Zou P, Chen H, Paholak H J, Sun D. Noninvasive fluorescence resonance energy transfer imaging of in vivo premature drug release from polymeric nanoparticles. Molecular Pharmaceutics, 2013, 10(11): 4185–4194

DOI PMID

33
Niu C, Wang Z, Lu G, Krupka T M, Sun Y, You Y, Song W, Ran H, Li P, Zheng Y. Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes. Biomaterials, 2013, 34(9): 2307–2317

DOI PMID

34
Chertok B, David A E, Yang V C. Brain tumor targeting of magnetic nanoparticles for potential drug delivery: effect of administration route and magnetic field topography. Journal of Controlled Release, 2011, 155(3): 393–399

DOI PMID

35
Ye F, Barrefelt A, Asem H, Abedi-Valugerdi M, El-Serafi I, Saghafian M, Abu-Salah K, Alrokayan S, Muhammed M, Hassan M. Biodegradable polymeric vesicles containing magnetic nanoparticles, quantum dots and anticancer drugs for drug delivery and imaging. Biomaterials, 2014, 35(12): 3885–3894

DOI PMID

36
Javid A, Ahmadian S, Saboury A A, Kalantar S M, Rezaei-Zarchi S, Shahzad S. Biocompatible APTES-PEG modified magnetite nanoparticles: Effective carriers of antineoplastic agents to ovarian cancer. Applied Biochemistry and Biotechnology, 2014, 173(1): 36–54

DOI PMID

37
Zou P, Yu Y, Wang Y A, Zhong Y, Welton A, Galbán C, Wang S, Sun D. Superparamagnetic iron oxide nanotheranostics for targeted cancer cell imaging and pH-dependent intracellular drug release. Molecular Pharmaceutics, 2010, 7(6): 1974–1984

DOI PMID

38
El-Dakdouki M H, Zhu D C, El-Boubbou K, Kamat M, Chen J, Li W, Huang X. Development of multifunctional hyaluronan-coated nanoparticles for imaging and drug delivery to cancer cells. Biomacromolecules, 2012, 13(4): 1144–1151

DOI PMID

39
Zhang J, Shin M C, Yang V C. Magnetic targeting of novel heparinized iron oxide nanoparticles evaluated in a 9L-glioma mouse model. Pharmaceutical Research, 2014, 31(3): 579–592

DOI PMID

40
Zhang J, Shin M C, David A E, Zhou J, Lee K, He H, Yang V C. Long-circulating heparin-functionalized magnetic nanoparticles for potential application as a protein drug delivery platform. Molecular Pharmaceutics, 2013, 10(10): 3892–3902

PMID

41
Chiang W H, Huang W C, Chang C W, Shen M Y, Shih Z F, Huang Y F, Lin S C, Chiu H C. Functionalized polymersomes with outlayered polyelectrolyte gels for potential tumor-targeted delivery of multimodal therapies and MR imaging. Journal of Controlled Release, 2013, 168(3): 280–288

DOI PMID

42
Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18): 3995–4021

DOI PMID

43
Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering, 2005, 100(1): 1–11

DOI PMID

44
Chen H W, Burnett J, Zhang F X, Zhang J M, Paholak H, Sun D X. Highly crystallized iron oxide nanoparticles as effective and biodegradable mediators for photothermal cancer therapy. Journal of Materials Chemistry B, 2014, 2(7): 757–765

DOI

45
Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, von Deimling A, Waldoefner N, Felix R, Jordan A. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. Journal of Neuro-Oncology, 2007, 81(1): 53–60

DOI PMID

46
Béalle G, Di Corato R, Kolosnjaj-Tabi J, Dupuis V, Clément O, Gazeau F, Wilhelm C, Ménager C. Ultra magnetic liposomes for MR imaging, targeting, and hyperthermia. Langmuir, 2012, 28(32): 11834–11842

DOI PMID

47
Johannsen M, Thiesen B, Wust P, Jordan A. Magnetic nanoparticle hyperthermia for prostate cancer. International Journal of Hyperthermia, 2010, 26(8): 790–795

DOI PMID

48
Silva A C, Oliveira T R, Mamani J B, Malheiros S M, Malavolta L, Pavon L F, Sibov T T, Amaro E Jr, Tannús A, Vidoto E L, Martins M J, Santos R S, Gamarra L F. Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. International Journal of Nanomedicine, 2011, 6: 591–603

PMID

49
Laurent S, Dutz S, Häfeli U O, Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science, 2011, 166(1-2): 8–23

PMID

50
Chiang W H, Ho V T, Chen H H, Huang W C, Huang Y F, Lin S C, Chern C S, Chiu H C. Superparamagnetic hollow hybrid nanogels as a potential guidable vehicle system of stimuli-mediated MR imaging and multiple cancer therapeutics. Langmuir, 2013, 29(21): 6434–6443

DOI PMID

51
Kievit F M, Zhang M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Accounts of Chemical Research, 2011, 44(10): 853–862

DOI PMID

52
Nie X, Chen C. Au nanostructures: an emerging prospect in cancer theranostics. Science China Life Sciences, 2012, 55(10): 872–883

DOI PMID

53
Choi W I, Sahu A, Kim Y H, Tae G. Photothermal cancer therapy and imaging based on gold nanorods. Annals of Biomedical Engineering, 2012, 40(2): 534–546

DOI PMID

54
Thakare V S, Das M, Jain A K, Patil S, Jain S. Carbon nanotubes in cancer theragnosis. Nanomedicine, 2010, 5(8): 1277–1301

DOI PMID

55
Feng L, Wu L, Qu X. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Advanced Materials, 2013, 25(2): 168–186

DOI PMID

56
Sahu A, Choi W I, Lee J H, Tae G. Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials, 2013, 34(26): 6239–6248

DOI PMID

57
Ke H, Wang J, Tong S, Jin Y, Wang S, Qu E, Bao G, Dai Z. Gold nanoshelled liquid perfluorocarbon magnetic nanocapsules: a nanotheranostic platform for bimodal ultrasound/magnetic resonance imaging guided photothermal tumor ablation. Theranostics, 2014, 4(1): 12–23

DOI PMID

58
Chen W, Ayala-Orozco C, Biswal N C, Perez-Torres C, Bartels M, Bardhan R, Stinnet G, Liu X D, Ji B, Deorukhkar A, Brown L V, Guha S, Pautler R G, Krishnan S, Halas N J, Joshi A. Targeting pancreatic cancer with magneto-fluorescent theranostic gold nanoshells. Nanomedicine, Posted online on September 24, 2013, Pages:1–14

DOI PMID

59
Wang X, Liu H, Chen D, Meng X, Liu T, Fu C, Hao N, Zhang Y, Wu X, Ren J, Tang F. Multifunctional Fe3O4@P(St/MAA)@chitosan@Au core/shell nanoparticles for dual imaging and photothermal therapy. ACS Applied Materials & Interfaces, 2013, 5(11): 4966–4971

DOI PMID

60
Melancon M P, Lu W, Zhong M, Zhou M, Liang G, Elliott A M, Hazle J D, Myers J N, Li C, Stafford R J. Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials, 2011, 32(30): 7600–7608

DOI PMID

61
Fan Z, Shelton M, Singh A K, Senapati D, Khan S A, Ray P C. Multifunctional plasmonic shell-magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells. ACS Nano, 2012, 6(2): 1065–1073

DOI PMID

62
Cheng L, Yang K, Li Y, Chen J, Wang C, Shao M, Lee S T, Liu Z. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angewandte Chemie International Edition in English, 2011, 50(32): 7385–7390

DOI PMID

63
Hu Y, Meng L, Niu L, Lu Q. Facile synthesis of superparamagnetic Fe3O4@polyphosphazene@Au shells for magnetic resonance imaging and photothermal therapy. ACS Applied Materials & Interfaces, 2013, 5(11): 4586–4591

DOI PMID

64
Ohulchanskyy T Y, Kopwitthaya A, Jeon M, Guo M, Law W C, Furlani E P, Kim C, Prasad P N. Phospholipid micelle-based magneto-plasmonic nanoformulation for magnetic field-directed, imaging-guided photo-induced cancer therapy. Nanomedicine-UK, 2013, 9(8): 1192–1202

DOI PMID

65
Wang C, Irudayaraj J. Multifunctional magnetic-optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens. Small, 2010, 6(2): 283–289

DOI PMID

66
Kirui D K, Khalidov I, Wang Y, Batt C A. Targeted near-IR hybrid magnetic nanoparticles for in vivo cancer therapy and imaging. Nanomedicine-UK, 2013, 9(5): 702–711

DOI PMID

67
Kirui D K, Rey D A, Batt C A. Gold hybrid nanoparticles for targeted phototherapy and cancer imaging. Nanotechnology, 2010, 21(10): 105105

DOI PMID

68
Shi X, Gong H, Li Y, Wang C, Cheng L, Liu Z. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials, 2013, 34(20): 4786–4793

DOI PMID

69
Yang K, Hu L, Ma X, Ye S, Cheng L, Shi X, Li C, Li Y, Liu Z. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Advanced Materials, 2012, 24(14): 1868–1872

DOI PMID

70
Ma Y, Tong S, Bao G, Gao C, Dai Z. Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy. Biomaterials, 2013, 34(31): 7706–7714

DOI PMID

71
Wang C, Xu H, Liang C, Liu Y, Li Z, Yang G, Cheng L, Li Y, Liu Z. Iron oxide @ polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. ACS Nano, 2013, 7(8): 6782–6795

DOI PMID

72
Shen S, Kong F, Guo X, Wu L, Shen H, Xie M, Wang X, Jin Y, Ge Y. CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation. Nanoscale, 2013, 5(17): 8056–8066

DOI PMID

73
Chu M, Shao Y, Peng J, Dai X, Li H, Wu Q, Shi D. Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials, 2013, 34(16): 4078–4088

DOI PMID

74
Levy M, Luciani N, Alloyeau D, Elgrabli D, Deveaux V, Pechoux C, Chat S, Wang G, Vats N, Gendron F, Factor C, Lotersztajn S, Luciani A, Wilhelm C, Gazeau F. Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials, 2011, 32(16): 3988–3999

DOI PMID

75
Gu L, Fang R H, Sailor M J, Park J H. In vivo clearance and toxicity of monodisperse iron oxide nanocrystals. ACS Nano, 2012, 6(6): 4947–4954

DOI PMID

76
Tassa C, Shaw S Y, Weissleder R. Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Accounts of Chemical Research, 2011, 44(10): 842–852

DOI PMID

77
Yoon H J, Lim T G, Kim J H, Cho Y M, Kim Y S, Chung U S, Kim J H, Choi B W, Koh W G, Jang W D. Fabrication of multifunctional layer-by-layer nanocapsules toward the design of theragnostic nano-platform. Biomacromolecules, 2014, 15(4): 1382–1389

DOI PMID

78
Shi J, Yu X, Wang L, Liu Y, Gao J, Zhang J, Ma R, Liu R, Zhang Z. PEGylated fullerene/iron oxide nanocomposites for photodynamic therapy, targeted drug delivery and MR imaging. Biomaterials, 2013, 34(37): 9666–9677

DOI PMID

79
Huang G, Chen H, Dong Y, Luo X, Yu H, Moore Z, Bey E A, Boothman D A, Gao J. Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics, 2013, 3(2): 116–126

DOI PMID

80
Taratula O, Garbuzenko O, Savla R, Wang Y A, He H, Minko T. Multifunctional nanomedicine platform for cancer specific delivery of siRNA by superparamagnetic iron oxide nanoparticles-dendrimer complexes. Current Drug Delivery, 2011, 8(1): 59–69

DOI PMID

81
Tang C, Russell P J, Martiniello-Wilks R, Rasko J E, Khatri A. Concise review: Nanoparticles and cellular carriers-allies in cancer imaging and cellular gene therapy? Stem Cells (Dayton, Ohio), 2010, 28(9): 1686–1702

DOI PMID

82
Medarova Z, Pham W, Farrar C, Petkova V, Moore A. In vivo imaging of siRNA delivery and silencing in tumors. Nature Medicine, 2007, 13(3): 372–377

DOI PMID

83
Chen J, Zhu S, Tong L, Li J, Chen F, Han Y, Zhao M, Xiong W. Superparamagnetic iron oxide nanoparticles mediated (131)I-hVEGF siRNA inhibits hepatocellular carcinoma tumor growth in nude mice. BMC Cancer, 2014, 14(1): 114

DOI PMID

84
Turcheniuk K, Tarasevych A V, Kukhar V P, Boukherroub R, Szunerits S. Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles. Nanoscale, 2013, 5(22): 10729–10752

DOI PMID

85
Hu S H, Hsieh T Y, Chiang C S, Chen P J, Chen Y Y, Chiu T L, Chen S Y. Surfactant-free, lipo-polymersomes stabilized by iron oxide nanoparticles/polymer interlayer for synergistically targeted and magnetically guided gene delivery. Advanced Healthcare Materials, 2014, 3(2): 273–282

DOI PMID

86
Jiang S, Eltoukhy A A, Love K T, Langer R, Anderson D G. Lipidoid-coated iron oxide nanoparticles for efficient DNA and siRNA delivery. Nano Letters, 2013, 13(3): 1059–1064

DOI PMID

87
Yathindranath V, Sun Z, Worden M, Donald L J, Thliveris J A, Miller D W, Hegmann T. One-pot synthesis of iron oxide nanoparticles with functional silane shells: a versatile general precursor for conjugations and biomedical applications. Langmuir, 2013, 29(34): 10850–10858

DOI PMID

88
Wang C, Ravi S, Martinez G V, Chinnasamy V, Raulji P, Howell M, Davis Y, Mallela J, Seehra M S, Mohapatra S. Dual-purpose magnetic micelles for MRI and gene delivery. Journal of Controlled Release, 2012, 163(1): 82–92

DOI PMID

89
He H, David A, Chertok B, Cole A, Lee K, Zhang J, Wang J, Huang Y, Yang V C. Magnetic nanoparticles for tumor imaging and therapy: a so-called theranostic system. Pharmaceutical Research, 2013, 30(10): 2445–2458

DOI PMID

Outlines

/