Iron oxide nanoparticle-based theranostics for cancer imaging and therapy

Xiaoqing REN, Hongwei CHEN, Victor YANG, Duxin SUN

PDF(1306 KB)
PDF(1306 KB)
Front. Chem. Sci. Eng. ›› 2014, Vol. 8 ›› Issue (3) : 253-264. DOI: 10.1007/s11705-014-1425-y
REVIEW ARTICLE

Iron oxide nanoparticle-based theranostics for cancer imaging and therapy

Author information +
History +

Abstract

Theranostic platform, which is equipped with both diagnostic and therapeutic functions, is a promising approach in cancer treatment. From various nanotheranostics studied, iron oxide nanoparticles have advantages since IONPs have good biocompatibility and spatial imaging capability. This review is focused on the IONP-based nanotheranostics for cancer imaging and treatment. The most recent progress for applications of IONP nanotheranostics is summarized, which includes IONP-based diagnosis, magnetic resonance imaging (MRI), multimodal imaging, chemotherapy, hyperthermal therapy, photodynamic therapy, and gene delivery. Future perspectives and challenges are also outlined for the potential development of IONP based theranostics in clinical use.

Keywords

theranostics / iron oxide nanoparticles / MRI / drug delivery / photothermal therapy / photodynamic therapy

Cite this article

Download citation ▾
Xiaoqing REN, Hongwei CHEN, Victor YANG, Duxin SUN. Iron oxide nanoparticle-based theranostics for cancer imaging and therapy. Front. Chem. Sci. Eng., 2014, 8(3): 253‒264 https://doi.org/10.1007/s11705-014-1425-y

References

[1]
Tietze R, Lyer S, Dürr S, Alexiou C. Nanoparticles for cancer therapy using magnetic forces. Nanomedicine-UK, 2012, 7(3): 447–457
CrossRef Pubmed Google scholar
[2]
Zhang Z, Wang J, Chen C. Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Advanced Materials, 2013, 25(28): 3869–3880
CrossRef Pubmed Google scholar
[3]
Yuan A, Wu J, Tang X, Zhao L, Xu F, Hu Y. Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies. Journal of Pharmaceutical Sciences, 2013, 102(1): 6–28
CrossRef Pubmed Google scholar
[4]
Menon J U, Jadeja P, Tambe P, Vu K, Yuan B, Nguyen K T. Nanomaterials for photo-based diagnostic and therapeutic applications. Theranostics, 2013, 3(3): 152–166
CrossRef Pubmed Google scholar
[5]
Ryu J H, Koo H, Sun I C, Yuk S H, Choi K, Kim K, Kwon I C. Tumor-targeting multi-functional nanoparticles for theragnosis: new paradigm for cancer therapy. Advanced Drug Delivery Reviews, 2012, 64(13): 1447–1458
CrossRef Pubmed Google scholar
[6]
Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Advanced Drug Delivery Reviews, 2010, 62(11): 1064–1079
CrossRef Pubmed Google scholar
[7]
Ho D, Sun X, Sun S. Monodisperse magnetic nanoparticles for theranostic applications. Accounts of Chemical Research, 2011, 44(10): 875–882
CrossRef Pubmed Google scholar
[8]
Sun S, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X, Li G. Monodisperse MFe2O4 (M= Fe, Co, Mn) nanoparticles. Journal of the American Chemical Society, 2004, 126(1): 273–279
CrossRef Pubmed Google scholar
[9]
Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller R N. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 2008, 108(6): 2064–2110
CrossRef Pubmed Google scholar
[10]
Park J, Lee E, Hwang N M, Kang M, Kim S C, Hwang Y, Park J G, Noh H J, Kim J Y, Park J H, Hyeon T. One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angewandte Chemie International Edition in English,, 2005, 44(19): 2873–2877
CrossRef Pubmed Google scholar
[11]
Huang J, Zhong X, Wang L, Yang L, Mao H. Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics, 2012, 2(1): 86–102
CrossRef Pubmed Google scholar
[12]
Huang Y, He S, Cao W, Cai K, Liang X J. Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale, 2012, 4(20): 6135–6149
CrossRef Pubmed Google scholar
[13]
Wang J, Huang Y, David A E, Chertok B, Zhang L, Yu F, Yang V C. Magnetic nanoparticles for MRI of brain tumors. Current Pharmaceutical Biotechnology, 2012, 13(12): 2403–2416
CrossRef Pubmed Google scholar
[14]
Psimadas D, Baldi G, Ravagli C, Comes Franchini M, Locatelli E, Innocenti C, Sangregorio C, Loudos G. Comparison of the magnetic, radiolabeling, hyperthermic and biodistribution properties of hybrid nanoparticles bearing CoFe2O4 and Fe3O4 metal cores. Nanotechnology, 2014, 25(2): 025101
CrossRef Pubmed Google scholar
[15]
Lee S H, Kim B H, Na H B, Hyeon T. Paramagnetic inorganic nanoparticles as T1 MRI contrast agents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6(2): 196–209
CrossRef Pubmed Google scholar
[16]
Xiao N, Gu W, Wang H, Deng Y, Shi X, Ye L. T1-T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles. Journal of Colloid and Interface Science, 2014, 417: 159–165
CrossRef Pubmed Google scholar
[17]
Ragheb R R T, Kim D, Bandyopadhyay A, Chahboune H, Bulutoglu B, Ezaldein H, Criscione J M, Fahmy T M. Induced clustered nanoconfinement of superparamagnetic iron oxide in biodegradable nanoparticles enhances transverse relaxivity for targeted theranostics. Magnetic Resonance in Medicine, 2013, 70(6): 1748–1760
CrossRef Pubmed Google scholar
[18]
Balasubramaniam S, Kayandan S, Lin Y N, Kelly D F, House M J, Woodward R C, St Pierre T G, Riffle J S, Davis R M. Toward design of magnetic nanoparticle clusters stabilized by biocompatible diblock copolymers for T₂-weighted MRI contrast. Langmuir, 2014, 30(6): 1580–1587
CrossRef Pubmed Google scholar
[19]
Tähkä S, Laiho A, Kostiainen M A. Diblock-copolymer-mediated self-assembly of protein-stabilized iron oxide nanoparticle clusters for magnetic resonance imaging. Chemistry, 2014, 20(10): 2718–2722
CrossRef Pubmed Google scholar
[20]
Lee G Y, Qian W P, Wang L, Wang Y A, Staley C A, Satpathy M, Nie S, Mao H, Yang L. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano, 2013, 7(3): 2078–2089
CrossRef Pubmed Google scholar
[21]
Zhang L, Zhong X, Wang L, Chen H, Wang Y A, Yeh J, Yang L, Mao H. T₁-weighted ultrashort echo time method for positive contrast imaging of magnetic nanoparticles and cancer cells bound with the targeted nanoparticles. Journal of Magnetic Resonance Imaging, 2011, 33(1): 194–202
CrossRef Pubmed Google scholar
[22]
Xie J, Liu G, Eden H S, Ai H, Chen X. Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Accounts of Chemical Research, 2011, 44(10): 883–892
CrossRef Pubmed Google scholar
[23]
Lin X, Xie J, Niu G, Zhang F, Gao H, Yang M, Quan Q, Aronova M A, Zhang G, Lee S, Leapman R, Chen X. Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Letters, 2011, 11(2): 814–819
CrossRef Pubmed Google scholar
[24]
Chen Y C, Wen S, Shang S A, Cui Y, Luo B, Teng G J. Magnetic resonance and near-infrared imaging using a novel dual-modality nano-probe for dendritic cell tracking in vivo. Cytotherapy, 2014, 16(5): 699–710
CrossRef Pubmed Google scholar
[25]
Lee H Y, Li Z, Chen K, Hsu A R, Xu C, Xie J, Sun S, Chen X. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. Journal of Nuclear Medicine, 2008, 49(8): 1371–1379
CrossRef Pubmed Google scholar
[26]
Xie J, Chen K, Huang J, Lee S, Wang J, Gao J, Li X, Chen X. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials, 2010, 31(11): 3016–3022
CrossRef Pubmed Google scholar
[27]
Key J, Cooper C, Kim A Y, Dhawan D, Knapp D W, Kim K, Park J H, Choi K, Kwon I C, Park K, Leary J F. In vivo NIRF and MR dual-modality imaging using glycol chitosan nanoparticles. Journal of Controlled Release, 2012, 163(2): 249–255
CrossRef Pubmed Google scholar
[28]
Sun Z, Huang P, Tong G, Lin J, Jin A, Rong P, Zhu L, Nie L, Niu G, Cao F, Chen X. VEGF-loaded graphene oxide as theranostics for multi-modality imaging-monitored targeting therapeutic angiogenesis of ischemic muscle. Nanoscale, 2013, 5(15): 6857–6866
CrossRef Pubmed Google scholar
[29]
Key J, Aryal S, Gentile F, Ananta J S, Zhong M, Landis M D, Decuzzi P. Engineering discoidal polymeric nanoconstructs with enhanced magneto-optical properties for tumor imaging. Biomaterials, 2013, 34(21): 5402–5410
CrossRef Pubmed Google scholar
[30]
Cao C, Wang X, Cai Y, Sun L, Tian L, Wu H, He X, Lei H, Liu W, Chen G, Zhu R, Pan Y. Targeted in vivo imaging of microscopic tumors with ferritin-based nanoprobes across biological barriers. Advanced Materials, 2014, 26(16): 2566–2571
CrossRef Pubmed Google scholar
[31]
Zhang Y, Zhang B, Liu F, Luo J, Bai J. In vivo tomographic imaging with fluorescence and MRI using tumor-targeted dual-labeled nanoparticles. International Journal of Nanomedicine, 2014, 9: 33–41
Pubmed
[32]
Zou P, Chen H, Paholak H J, Sun D. Noninvasive fluorescence resonance energy transfer imaging of in vivo premature drug release from polymeric nanoparticles. Molecular Pharmaceutics, 2013, 10(11): 4185–4194
CrossRef Pubmed Google scholar
[33]
Niu C, Wang Z, Lu G, Krupka T M, Sun Y, You Y, Song W, Ran H, Li P, Zheng Y. Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes. Biomaterials, 2013, 34(9): 2307–2317
CrossRef Pubmed Google scholar
[34]
Chertok B, David A E, Yang V C. Brain tumor targeting of magnetic nanoparticles for potential drug delivery: effect of administration route and magnetic field topography. Journal of Controlled Release, 2011, 155(3): 393–399
CrossRef Pubmed Google scholar
[35]
Ye F, Barrefelt A, Asem H, Abedi-Valugerdi M, El-Serafi I, Saghafian M, Abu-Salah K, Alrokayan S, Muhammed M, Hassan M. Biodegradable polymeric vesicles containing magnetic nanoparticles, quantum dots and anticancer drugs for drug delivery and imaging. Biomaterials, 2014, 35(12): 3885–3894
CrossRef Pubmed Google scholar
[36]
Javid A, Ahmadian S, Saboury A A, Kalantar S M, Rezaei-Zarchi S, Shahzad S. Biocompatible APTES-PEG modified magnetite nanoparticles: Effective carriers of antineoplastic agents to ovarian cancer. Applied Biochemistry and Biotechnology, 2014, 173(1): 36–54
CrossRef Pubmed Google scholar
[37]
Zou P, Yu Y, Wang Y A, Zhong Y, Welton A, Galbán C, Wang S, Sun D. Superparamagnetic iron oxide nanotheranostics for targeted cancer cell imaging and pH-dependent intracellular drug release. Molecular Pharmaceutics, 2010, 7(6): 1974–1984
CrossRef Pubmed Google scholar
[38]
El-Dakdouki M H, Zhu D C, El-Boubbou K, Kamat M, Chen J, Li W, Huang X. Development of multifunctional hyaluronan-coated nanoparticles for imaging and drug delivery to cancer cells. Biomacromolecules, 2012, 13(4): 1144–1151
CrossRef Pubmed Google scholar
[39]
Zhang J, Shin M C, Yang V C. Magnetic targeting of novel heparinized iron oxide nanoparticles evaluated in a 9L-glioma mouse model. Pharmaceutical Research, 2014, 31(3): 579–592
CrossRef Pubmed Google scholar
[40]
Zhang J, Shin M C, David A E, Zhou J, Lee K, He H, Yang V C. Long-circulating heparin-functionalized magnetic nanoparticles for potential application as a protein drug delivery platform. Molecular Pharmaceutics, 2013, 10(10): 3892–3902
Pubmed
[41]
Chiang W H, Huang W C, Chang C W, Shen M Y, Shih Z F, Huang Y F, Lin S C, Chiu H C. Functionalized polymersomes with outlayered polyelectrolyte gels for potential tumor-targeted delivery of multimodal therapies and MR imaging. Journal of Controlled Release, 2013, 168(3): 280–288
CrossRef Pubmed Google scholar
[42]
Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18): 3995–4021
CrossRef Pubmed Google scholar
[43]
Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering, 2005, 100(1): 1–11
CrossRef Pubmed Google scholar
[44]
Chen H W, Burnett J, Zhang F X, Zhang J M, Paholak H, Sun D X. Highly crystallized iron oxide nanoparticles as effective and biodegradable mediators for photothermal cancer therapy. Journal of Materials Chemistry B, 2014, 2(7): 757–765
CrossRef Google scholar
[45]
Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, von Deimling A, Waldoefner N, Felix R, Jordan A. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. Journal of Neuro-Oncology, 2007, 81(1): 53–60
CrossRef Pubmed Google scholar
[46]
Béalle G, Di Corato R, Kolosnjaj-Tabi J, Dupuis V, Clément O, Gazeau F, Wilhelm C, Ménager C. Ultra magnetic liposomes for MR imaging, targeting, and hyperthermia. Langmuir, 2012, 28(32): 11834–11842
CrossRef Pubmed Google scholar
[47]
Johannsen M, Thiesen B, Wust P, Jordan A. Magnetic nanoparticle hyperthermia for prostate cancer. International Journal of Hyperthermia, 2010, 26(8): 790–795
CrossRef Pubmed Google scholar
[48]
Silva A C, Oliveira T R, Mamani J B, Malheiros S M, Malavolta L, Pavon L F, Sibov T T, Amaro E Jr, Tannús A, Vidoto E L, Martins M J, Santos R S, Gamarra L F. Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. International Journal of Nanomedicine, 2011, 6: 591–603
Pubmed
[49]
Laurent S, Dutz S, Häfeli U O, Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science, 2011, 166(1-2): 8–23
Pubmed
[50]
Chiang W H, Ho V T, Chen H H, Huang W C, Huang Y F, Lin S C, Chern C S, Chiu H C. Superparamagnetic hollow hybrid nanogels as a potential guidable vehicle system of stimuli-mediated MR imaging and multiple cancer therapeutics. Langmuir, 2013, 29(21): 6434–6443
CrossRef Pubmed Google scholar
[51]
Kievit F M, Zhang M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Accounts of Chemical Research, 2011, 44(10): 853–862
CrossRef Pubmed Google scholar
[52]
Nie X, Chen C. Au nanostructures: an emerging prospect in cancer theranostics. Science China Life Sciences, 2012, 55(10): 872–883
CrossRef Pubmed Google scholar
[53]
Choi W I, Sahu A, Kim Y H, Tae G. Photothermal cancer therapy and imaging based on gold nanorods. Annals of Biomedical Engineering, 2012, 40(2): 534–546
CrossRef Pubmed Google scholar
[54]
Thakare V S, Das M, Jain A K, Patil S, Jain S. Carbon nanotubes in cancer theragnosis. Nanomedicine, 2010, 5(8): 1277–1301
CrossRef Pubmed Google scholar
[55]
Feng L, Wu L, Qu X. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Advanced Materials, 2013, 25(2): 168–186
CrossRef Pubmed Google scholar
[56]
Sahu A, Choi W I, Lee J H, Tae G. Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials, 2013, 34(26): 6239–6248
CrossRef Pubmed Google scholar
[57]
Ke H, Wang J, Tong S, Jin Y, Wang S, Qu E, Bao G, Dai Z. Gold nanoshelled liquid perfluorocarbon magnetic nanocapsules: a nanotheranostic platform for bimodal ultrasound/magnetic resonance imaging guided photothermal tumor ablation. Theranostics, 2014, 4(1): 12–23
CrossRef Pubmed Google scholar
[58]
Chen W, Ayala-Orozco C, Biswal N C, Perez-Torres C, Bartels M, Bardhan R, Stinnet G, Liu X D, Ji B, Deorukhkar A, Brown L V, Guha S, Pautler R G, Krishnan S, Halas N J, Joshi A. Targeting pancreatic cancer with magneto-fluorescent theranostic gold nanoshells. Nanomedicine, Posted online on September 24, 2013, Pages:1–14
CrossRef Pubmed Google scholar
[59]
Wang X, Liu H, Chen D, Meng X, Liu T, Fu C, Hao N, Zhang Y, Wu X, Ren J, Tang F. Multifunctional Fe3O4@P(St/MAA)@chitosan@Au core/shell nanoparticles for dual imaging and photothermal therapy. ACS Applied Materials & Interfaces, 2013, 5(11): 4966–4971
CrossRef Pubmed Google scholar
[60]
Melancon M P, Lu W, Zhong M, Zhou M, Liang G, Elliott A M, Hazle J D, Myers J N, Li C, Stafford R J. Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials, 2011, 32(30): 7600–7608
CrossRef Pubmed Google scholar
[61]
Fan Z, Shelton M, Singh A K, Senapati D, Khan S A, Ray P C. Multifunctional plasmonic shell-magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells. ACS Nano, 2012, 6(2): 1065–1073
CrossRef Pubmed Google scholar
[62]
Cheng L, Yang K, Li Y, Chen J, Wang C, Shao M, Lee S T, Liu Z. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angewandte Chemie International Edition in English, 2011, 50(32): 7385–7390
CrossRef Pubmed Google scholar
[63]
Hu Y, Meng L, Niu L, Lu Q. Facile synthesis of superparamagnetic Fe3O4@polyphosphazene@Au shells for magnetic resonance imaging and photothermal therapy. ACS Applied Materials & Interfaces, 2013, 5(11): 4586–4591
CrossRef Pubmed Google scholar
[64]
Ohulchanskyy T Y, Kopwitthaya A, Jeon M, Guo M, Law W C, Furlani E P, Kim C, Prasad P N. Phospholipid micelle-based magneto-plasmonic nanoformulation for magnetic field-directed, imaging-guided photo-induced cancer therapy. Nanomedicine-UK, 2013, 9(8): 1192–1202
CrossRef Pubmed Google scholar
[65]
Wang C, Irudayaraj J. Multifunctional magnetic-optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens. Small, 2010, 6(2): 283–289
CrossRef Pubmed Google scholar
[66]
Kirui D K, Khalidov I, Wang Y, Batt C A. Targeted near-IR hybrid magnetic nanoparticles for in vivo cancer therapy and imaging. Nanomedicine-UK, 2013, 9(5): 702–711
CrossRef Pubmed Google scholar
[67]
Kirui D K, Rey D A, Batt C A. Gold hybrid nanoparticles for targeted phototherapy and cancer imaging. Nanotechnology, 2010, 21(10): 105105
CrossRef Pubmed Google scholar
[68]
Shi X, Gong H, Li Y, Wang C, Cheng L, Liu Z. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials, 2013, 34(20): 4786–4793
CrossRef Pubmed Google scholar
[69]
Yang K, Hu L, Ma X, Ye S, Cheng L, Shi X, Li C, Li Y, Liu Z. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Advanced Materials, 2012, 24(14): 1868–1872
CrossRef Pubmed Google scholar
[70]
Ma Y, Tong S, Bao G, Gao C, Dai Z. Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy. Biomaterials, 2013, 34(31): 7706–7714
CrossRef Pubmed Google scholar
[71]
Wang C, Xu H, Liang C, Liu Y, Li Z, Yang G, Cheng L, Li Y, Liu Z. Iron oxide @ polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. ACS Nano, 2013, 7(8): 6782–6795
CrossRef Pubmed Google scholar
[72]
Shen S, Kong F, Guo X, Wu L, Shen H, Xie M, Wang X, Jin Y, Ge Y. CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation. Nanoscale, 2013, 5(17): 8056–8066
CrossRef Pubmed Google scholar
[73]
Chu M, Shao Y, Peng J, Dai X, Li H, Wu Q, Shi D. Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials, 2013, 34(16): 4078–4088
CrossRef Pubmed Google scholar
[74]
Levy M, Luciani N, Alloyeau D, Elgrabli D, Deveaux V, Pechoux C, Chat S, Wang G, Vats N, Gendron F, Factor C, Lotersztajn S, Luciani A, Wilhelm C, Gazeau F. Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials, 2011, 32(16): 3988–3999
CrossRef Pubmed Google scholar
[75]
Gu L, Fang R H, Sailor M J, Park J H. In vivo clearance and toxicity of monodisperse iron oxide nanocrystals. ACS Nano, 2012, 6(6): 4947–4954
CrossRef Pubmed Google scholar
[76]
Tassa C, Shaw S Y, Weissleder R. Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Accounts of Chemical Research, 2011, 44(10): 842–852
CrossRef Pubmed Google scholar
[77]
Yoon H J, Lim T G, Kim J H, Cho Y M, Kim Y S, Chung U S, Kim J H, Choi B W, Koh W G, Jang W D. Fabrication of multifunctional layer-by-layer nanocapsules toward the design of theragnostic nano-platform. Biomacromolecules, 2014, 15(4): 1382–1389
CrossRef Pubmed Google scholar
[78]
Shi J, Yu X, Wang L, Liu Y, Gao J, Zhang J, Ma R, Liu R, Zhang Z. PEGylated fullerene/iron oxide nanocomposites for photodynamic therapy, targeted drug delivery and MR imaging. Biomaterials, 2013, 34(37): 9666–9677
CrossRef Pubmed Google scholar
[79]
Huang G, Chen H, Dong Y, Luo X, Yu H, Moore Z, Bey E A, Boothman D A, Gao J. Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics, 2013, 3(2): 116–126
CrossRef Pubmed Google scholar
[80]
Taratula O, Garbuzenko O, Savla R, Wang Y A, He H, Minko T. Multifunctional nanomedicine platform for cancer specific delivery of siRNA by superparamagnetic iron oxide nanoparticles-dendrimer complexes. Current Drug Delivery, 2011, 8(1): 59–69
CrossRef Pubmed Google scholar
[81]
Tang C, Russell P J, Martiniello-Wilks R, Rasko J E, Khatri A. Concise review: Nanoparticles and cellular carriers-allies in cancer imaging and cellular gene therapy? Stem Cells (Dayton, Ohio), 2010, 28(9): 1686–1702
CrossRef Pubmed Google scholar
[82]
Medarova Z, Pham W, Farrar C, Petkova V, Moore A. In vivo imaging of siRNA delivery and silencing in tumors. Nature Medicine, 2007, 13(3): 372–377
CrossRef Pubmed Google scholar
[83]
Chen J, Zhu S, Tong L, Li J, Chen F, Han Y, Zhao M, Xiong W. Superparamagnetic iron oxide nanoparticles mediated (131)I-hVEGF siRNA inhibits hepatocellular carcinoma tumor growth in nude mice. BMC Cancer, 2014, 14(1): 114
CrossRef Pubmed Google scholar
[84]
Turcheniuk K, Tarasevych A V, Kukhar V P, Boukherroub R, Szunerits S. Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles. Nanoscale, 2013, 5(22): 10729–10752
CrossRef Pubmed Google scholar
[85]
Hu S H, Hsieh T Y, Chiang C S, Chen P J, Chen Y Y, Chiu T L, Chen S Y. Surfactant-free, lipo-polymersomes stabilized by iron oxide nanoparticles/polymer interlayer for synergistically targeted and magnetically guided gene delivery. Advanced Healthcare Materials, 2014, 3(2): 273–282
CrossRef Pubmed Google scholar
[86]
Jiang S, Eltoukhy A A, Love K T, Langer R, Anderson D G. Lipidoid-coated iron oxide nanoparticles for efficient DNA and siRNA delivery. Nano Letters, 2013, 13(3): 1059–1064
CrossRef Pubmed Google scholar
[87]
Yathindranath V, Sun Z, Worden M, Donald L J, Thliveris J A, Miller D W, Hegmann T. One-pot synthesis of iron oxide nanoparticles with functional silane shells: a versatile general precursor for conjugations and biomedical applications. Langmuir, 2013, 29(34): 10850–10858
CrossRef Pubmed Google scholar
[88]
Wang C, Ravi S, Martinez G V, Chinnasamy V, Raulji P, Howell M, Davis Y, Mallela J, Seehra M S, Mohapatra S. Dual-purpose magnetic micelles for MRI and gene delivery. Journal of Controlled Release, 2012, 163(1): 82–92
CrossRef Pubmed Google scholar
[89]
He H, David A, Chertok B, Cole A, Lee K, Zhang J, Wang J, Huang Y, Yang V C. Magnetic nanoparticles for tumor imaging and therapy: a so-called theranostic system. Pharmaceutical Research, 2013, 30(10): 2445–2458
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1306 KB)

Accesses

Citations

Detail

Sections
Recommended

/