REVIEW ARTICLE

Information gathering and processing with fluorescent molecules

  • Brian DALY ,
  • Jue LING ,
  • A. Prasanna de SILVA
Expand
  • School of Chemistry and Chemical Engineering, Queen’s University, Belfast BT9 5AG, Northern Ireland

Received date: 20 Mar 2014

Accepted date: 22 Apr 2014

Published date: 22 May 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Molecular information gathering and processing — a young field of applied chemistry — is undergoing good growth. The progress is occurring both in terms of conceptual development and in terms of the strengthening of older concepts with new examples. This review critically surveys these two broad avenues. We consider some cases where molecules emulate one of the building blocks of electronic logic gates. We then examine molecular emulation of various Boolean logic gates carrying one, two or three inputs. Some single-input gates are popular information gathering devices. Special systems, such as ‘lab-on-a-molecule’ and molecular keypad locks, also receive attention. A situation deviating from the Boolean blueprint is also discussed. Some pointers are offered for maintaining the upward curve of the field.

Cite this article

Brian DALY , Jue LING , A. Prasanna de SILVA . Information gathering and processing with fluorescent molecules[J]. Frontiers of Chemical Science and Engineering, 2014 , 8(2) : 240 -251 . DOI: 10.1007/s11705-014-1432-z

1
de Silva A P, Gunaratne H Q N, McCoy C P. A molecular photoionic AND gate based on fluorescent signalling. Nature, 1993, 364(6432): 42–44

2
Balzani V, Venturi M, Credi A. Molecular Devices and Machines. 2nd ed. Weinheim: Wiley-VCH, 2008

3
Katz E. Molecular and Supramolecular Information Processing: from Molecular Switches to Logic Systems. Weinheim: Wiley-VCH, 2012

4
Katz E. Biomolecular Information Processing: from Logic Systems to Smart Sensors and Actuators. Weinheim: Wiley-VCH, 2012

5
Szacilowski K. Infochemistry: Information Processing at the Nanoscale. Chichester: Wiley, 2012

6
Feringa B, Browne W S. Molecular Switches. 2nd ed. Wiley-VCH, Weinheim, 2012

7
de Silva A P. Molecular Logic-based Computation. Cambridge: Royal Society of Chemistry, 2012

8
de Silva A P, McClenaghan N D, McCoy C P. Logic gates. In: Balzani V, ed. Electron Transfer in Chemistry, Vol 5. Weinheim: Wiley-VCH, 2001, 156

9
Raymo F M. Digital processing and communication with molecular switches. Advanced Materials, 2002, 14(6): 401–414

10
de Silva A P, McClenaghan N D. Molecular-scale logic gates. Chemistry, 2004, 10(3): 574–586

11
de Silva A P, Leydet Y, Lincheneau C, McClenaghan N D. Chemical approaches to nanometre-scale logic gates. Journal of Physics Condensed Matter, 2006, 18(33): S1847–S1872

12
de Silva A P, Uchiyama S. Molecular logic and computing. Nature Nanotechnology, 2007, 2(7): 399–410

13
Benenson Y. Biocomputers: from test tubes to live cells. Molecular BioSystems, 2009, 5(7): 675–685

14
Katz E, Privman V. Enzyme-based logic systems for information processing. Chemical Society Reviews, 2010, 39(5): 1835–1857

15
Tian H. Data processing on a unimolecular platform. Angewandte Chemie International Edition, 2010, 49(28): 4710–4712

16
Pischel U, Andréasson J, Gust D, Pais V F. Information processing with molecules — Quo vadis? ChemPhysChem, 2013, 14(1): 28–46

17
Bissell R A, de Silva A P. Phosphorescent PET (photoinduced electron transfer) sensors: Prototypical examples for proton monitoring and a ‘message in a bottle’ enhancement strategy with cyclodextrins. Journal of the Chemical Society: Chemical Communications, 1991, 17(17): 1148–1150

18
Bryan A J, de Silva A P, de Silva S A, Rupasinghe R A D, Sandanayake K R A. Photo-induced electron transfer as a general design logic for fluorescent molecular sensors for cations. Biosensors, 1989, 4(3): 169–179

19
Gell C, Brockwell D, Smith A. Handbook of Single Molecule Fluorescence Spectroscopy. New York: Oxford University Press, 2006

20
Gregg J. Ones and Zeros: Understanding Boolean Algebra, Digital Circuits, and the Logic of Sets. Wiley-IEEE Press, 1998

21
Malvino A P, Brown J A. Digital Computer Electronics, Glencoe. 3rd ed. Lake Forest, 1993

22
Maxfield C. Bebop to the Boolean Boogie: An Unconventional Guide to Electronics. Massachusetts: Newnes, 2008

23
Ben-Ari M. Mathematical Logic for Computer Science. Hemel Hempstead: Prentice-Hall, 1993

24
Hughes E. Electrical Technology. 6th ed. Burnt Mill: Longman, 1990

25
Keirstead A E, Bridgewater J W, Terazono Y, Kodis G, Straight S, Liddell P A, Moore A L, Moore T A, Gust D. Photochemical “triode” molecular signal transducer. Journal of the American Chemical Society, 2010, 132(18): 6588–6595

26
Copley G, Moore T A, Moore A L, Gust D. Analog applications of photochemical switches. Advanced Materials, 2013, 25(3): 456–461

27
Irie M. Diarylethenes for memories and switches. Chemical Reviews, 2000, 100(5): 1685–1716

28
Huxley A J M, Schroeder M, Gunaratne H Q N, de Silva A P. Modification of fluorescent photoinduced electron transfer (PET) sensors/switches to produce molecular photoionic triode action. Angewandte Chemie, 2014, 126(14): 3696–3699

29
Callan J F, de Silva A P, Ferguson J, Huxley A J, O'Brien A M. Fluorescent photoionic devices with two receptors and two switching mechanisms: Applications to pH sensors and implications for metal ion detection. Tetrahedron, 2004, 60(49): 11125–11131

30
de Silva A P, Gunaratne H Q N, Sandanayake K R A S. A new benzo-annelated cryptand and a derivative with alkali cation-sensitive fluorescence. Tetrahedron Letters, 1990, 31(36): 5193–5196

31
de Silva A P, Gunaratne H Q, Gunnlaugsson T, Huxley A J, McCoy C P, Rademacher J T, Rice T E. Signaling recognition events with fluorescent sensors and switches. Chemical Reviews, 1997, 97(5): 1515–1566

32
Bishop E. Indicators. Oxford: Pergamon, 1972

33
de Silva A P, Gunaratne H Q N, Lynch P L M, Patty A J, Spence G L. Luminescence and charge transfer. Part 3. The use of chromophores with ICT (internal charge transfer) excited states in the construction of fluorescent PET (photoinduced electron transfer) pH sensors and related absorption pH sensors with aminoalkyl side chains. Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry, 1993, (9): 1611–1616

34
de Silva A P, Vance T P, West M E S, Wright G D. Bright molecules with sense, logic, numeracy and utility. Organic & Biomolecular Chemistry, 2008, 6(14): 2468–2480

35
Avouris P, Chen Z, Perebeinos V. Carbon-based electronics. Nature Nanotechnology, 2007, 2(10): 605–615

36
Bachtold A, Hadley P, Nakanishi T, Dekker C. Logic circuits with carbon nanotube transistors. Science, 2001, 294(5545): 1317–1320

37
Wang B, Anslyn E V. Chemosensors: Principles, Strategies, and Applications. John Wiley & Sons, 2011

38
Ast S, Schwarze T, Müller H, Sukhanov A, Michaelis S, Wegener J, Wolfbeis O S, Körzdörfer T, Dürkop A, Holdt H J. A highly K+-selective phenylaza-[18] crown-6-lariat-ether-based fluoroionophore and its application in the sensing of K+ ions with an optical sensor film and in cells. Chemistry, 2013, 19(44): 14911–14917

39
Schultz R A, White B D, Dishong D M, Arnold K A, Gokel G W. 12-, 15-, and 18-Membered-ring nitrogen-pivot lariat ethers: Syntheses, properties, and sodium and ammonium cation binding properties. Journal of the American Chemical Society, 1985, 107(23): 6659–6668

40
Zheng S, Lynch P L M, Rice T E, Moody T S, Gunaratne H Q, de Silva A P. Structural effects on the pH-dependent fluorescence of naphthalenic derivatives and consequences for sensing/switching. Photochemical & Photobiological Sciences, 2012, 11(11): 1675–1681

41
Grabowski Z R, Dobkowski J. Twisted intramolecular charge transfer (TICT) excited states: Energy and molecular structure. Pure and Applied Chemistry, 1983, 55(2): 245–252

42
Batat P, Vives G, Bofinger R, Chang R W, Kauffmann B, Oda R, Jonusauskas G, McClenaghan N D. Dynamics of ion-regulated photoinduced electron transfer in BODIPY-BAPTA conjugates. Photochemical & Photobiological Sciences, 2012, 11(11): 1666–1674

43
He H, Mortellaro M A, Leiner M J P, Young S T, Fraatz R J, Tusa J K. A fluorescent chemosensor for sodium based on photoinduced electron transfer. Analytical Chemistry, 2003, 75(3): 549–555

44
He H, Mortellaro M A, Leiner M J P, Fraatz R J, Tusa J K. A fluorescent sensor with high selectivity and sensitivity for potassium in water. Journal of the American Chemical Society, 2003, 125(6): 1468–1469

45
Tusa J K, He H. Critical care analyzer with fluorescent optical chemosensors for blood analytes. Journal of Materials Chemistry, 2005, 15(27–28): 2640–2647

46
He H, Jenkins K, Lin C. A fluorescent chemosensor for calcium with excellent storage stability in water. Analytica Chimica Acta, 2008, 611(2): 197–204

47
de Silva A P, Gunaratne H Q N, Habib-Jiwan J L, McCoy C P, Rice T E, Soumillion J P. New fluorescent model compounds for the study of photoinduced electron transfer: the influence of a molecular electric field in the excited state. Angewandte Chemie International Edition, 1995, 34(16): 1728–1731

48
The opitimedical website

49
de Silva A P, Gunaratne H Q N, Gunnlaugsson T. Fluorescent PET (photoinduced electron transfer) reagents for thiols. Tetrahedron Letters, 1998, 39(28): 5077–5080

50
Kojima H, Nagano T. Fluorescent indicators for nitric oxide. Advanced Materials, 2000, 12(10): 763–765

51
Plater M J, Greig I, Helfrich M H, Ralston S H. The synthesis and evaluation of o-phenylenediamine derivatives as fluorescent probes for nitric oxide detection. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry, 2001, (20): 2553–2559

52
James T D, Phillips M D, Shinkai S. Boronic Acids in Saccharide Recognition. Royal Society of Chemistry, 2006

53
Bissell R A, Bryan A J, de Silva A P, McCoy C P. Fluorescent PET sensors with targeting/anchoring modules as molecular versions of submarine periscopes for mapping membrane-bounded protons. Journal of the Chemical Society: Chemical Communications, 1994, (4): 405–407

54
Uchiyama S, Iwai K, de Silva A P. Multiplexing sensory molecules map protons near micellar membranes. Angewandte Chemie International Edition, 2008, 47(25): 4667–4669

55
Harold F M. The Vital Force: A Study of Bioenergetics. New York: WH Freeman, 1986

56
Bhardwaj V K, Hundal M S, Hundal G. A tripodal receptor bearing catechol groups for the chromogenic sensing of F ions via frozen proton transfer. Tetrahedron, 2009, 65(41): 8556–8562

57
Winstanley K J, Sayer A M, Smith D K. Anion binding by catechols — an NMR, optical and electrochemical study. Organic & Biomolecular Chemistry, 2006, 4(9): 1760–1767

58
de Silva A P, McClean G D, Pagliari S. Direct detection of ion pairs by fluorescence enhancement. Chemical Communications, 2003, (16): 2010–2011

59
Koskela S J M, Fyles T M, James T D. A ditopic fluorescent sensor for potassium fluoride. Chemical Communications, 2005, (7): 945–947

60
Alfonso M, Espinosa A, Tárraga A, Molina P. A simple but effective dual redox and fluorescent ion pair receptor based on a ferrocene-imidazopyrene dyad. Organic Letters, 2011, 13(8): 2078–2081

61
Moro A J, Cywinski P J, Körsten S, Mohr G J. An ATP fluorescent chemosensor based on a Zn(II)-complexed dipicolylamine receptor coupled with a naphthalimide chromophore. Chemical Communications, 2010, 46(7): 1085–1087

62
de Silva A P, Gunaratne H Q N, McVeigh C, Maguire G E M, Maxwell P R S, O’Hanlon E. Fluorescent signalling of the brain neurotransmitter γ-aminobutyric acid and related amino acid zwitterions. Chemical Communications, 1996, (18): 2191–2192

63
Karak D, Das S, Lohar S, Banerjee A, Sahana A, Hauli I, Mukhopadhyay S K, Safin D A, Babashkina M G, Bolte M, Garcia Y, Das D. A naphthalene-thiophene hybrid molecule as a fluorescent AND logic gate with Zn2+ and OAc- ions as inputs: cell imaging and computational studies. Dalton Transactions, 2013, 42(19): 6708–6715

64
Farrugia T J, Magri D C. ‘Pourbaix sensors’: A new class of fluorescent pE–pH molecular AND logic gates based on photoinduced electron transfer. New Journal of Chemistry, 2012, 37(1): 148–151

65
Magri D C. A fluorescent and logic gate driven by electrons and protons. New Journal of Chemistry, 2009, 33(3): 457–461

66
Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions. Oxford: Pergamon Press, 1966

67
Bu J H, Zheng Q Y, Chen C F, Huang Z T. New fluorescence-quenching process through resumption of PET process induced by complexation of alkali metal ion. Organic Letters, 2004, 6(19): 3301–3303

68
Nishimura G, Ishizumi K, Shiraishi Y, Hirai T. A triethylenetetramine bearing anthracene and benzophenone as a fluorescent molecular logic gate with either-or switchable dual logic functions. The Journal of Physical Chemistry B, 2006, 110(43): 21596–21602

69
Montenegro J M, Perez-Inestrosa E, Collado D, Vida Y, Suau R. A natural-product-inspired photonic logic gate based on photoinduced electron-transfer-generated dual-channel fluorescence. Organic Letters, 2004, 6(14): 2353–2355

70
Banthia S, Samanta A. Multiple logical access with a single fluorophore-spacer-receptor system: Realization of inhibit (INH) logic function. European Journal of Organic Chemistry, 2005, 2005(23): 4967–4970

71
Gunnlaugsson T, Mac Dónaill D A, Parker D. Lanthanide macrocyclic quinolyl conjugates as luminescent molecular-level devices. Journal of the American Chemical Society, 2001, 123(51): 12866–12876

72
de Sousa M, Kluciar M, Abad S, Miranda M A, de Castro B, Pischel U. An inhibit (INH) molecular logic gate based on 1,8-naphthalimide-sensitised europium luminescence. Photochemical & Photobiological Sciences, 2004, 3(7): 639–642

73
Park J S, Karnas E, Ohkubo K, Chen P, Kadish K M, Fukuzumi S, Bielawski C W, Hudnall T W, Lynch V M, Sessler J L. Ion-mediated electron transfer in a supramolecular donor-acceptor ensemble. Science, 2010, 329(5997): 1324–1327

74
Kaur K, Bhardwaj V K, Kaur N, Singh N. Fluorescent primary sensor for zinc and resultant complex as secondary sensor towards phosphorylated biomolecules: INHIBIT logic gate. Inorganica Chimica Acta, 2013, 399: 1–5

75
Kloppfer W. Intramolecular proton transfer in electronically excited molecules. In: Pitts J N, Hammond G S, Gollnick K, eds. Advances in Photochemistry, Volume 10. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007, 311–358

76
Lieu V T, Handy C A. The in situ fluorometric determination of alkaline earth metal ions resolved on paper. Analytical Letters, 1974, 7(4): 267–278

77
Kilby J S C. Turning potential into realities: the invention of the integrated circuit (Nobel lecture). ChemPhysChem, 2001, 2(8–9): 482–489

78
Guliyev R, Ozturk S, Kostereli Z, Akkaya E U. From virtual to physical: integration of chemical logic gates. Angewandte Chemie International Edition, 2011, 50(42): 9826–9831

79
de Silva A P. Molecular logic gate arrays. Chemistry, an Asian Journal, 2011, 6(3): 750–766

80
Erbas-Cakmak S, Akkaya E U. Cascading of molecular logic gates for advanced functions: a self-reporting, activatable photosensitizer. Angewandte Chemie International Edition, 2013, 52(43): 11364–11368

81
McDonnell S O, Hall M J, Allen L T, Byrne A, Gallagher W M, O’Shea D F. Supramolecular photonic therapeutic agents. Journal of the American Chemical Society, 2005, 127(47): 16360–16361

82
Ozlem S, Akkaya E U. Thinking outside the silicon box: molecular and logic as an additional layer of selectivity in singlet oxygen generation for photodynamic therapy. Journal of the American Chemical Society, 2009, 131(1): 48–49

83
Raymo F M, Giordani S. Signal communication between molecular switches. Organic Letters, 2001, 3(22): 3475–3478

84
Raymo F M, Giordani S. Digital communication through intermolecular fluorescence modulation. Organic Letters, 2001, 3(12): 1833–1836

85
de Silva A P, Dixon I M, Gunaratne H Q N, Gunnlaugsson T, Maxwell P R, Rice T E. Integration of logic functions and sequential operation of gates at the molecular-scale. Journal of the American Chemical Society, 1999, 121(6): 1393–1394

86
Wang L, Li B, Zhang L, Luo Y. Three-input-three-output logic operations based on absorption and fluorescence dual-mode from a thiourea compound. Dalton Transactions, 2013, 42(2): 459–465

87
Rurack K. Flipping the light switch ‘on’ — the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2001, 57(11): 2161–2195

88
Magri D C, Fava M C, Mallia C J. A sodium-enabled ‘Pourbaix sensor’: a three-input AND logic gate as a ‘lab-on-a-molecule’ for monitoring Na+, pH and pE. Chemical Communications, 2014, 50(8): 1009–1011

89
Magri D C, Brown G J, McClean G D, de Silva A P. Communicating chemical congregation: a molecular AND logic gate with three chemical inputs as a “lab-on-a-molecule” prototype. Journal of the American Chemical Society, 2006, 128(15): 4950–4951

90
Rout B, Unger L, Armony G, Iron M A, Margulies D. Medication detection by a combinatorial fluorescent molecular sensor. Angewandte Chemie, 2012, 124(50): 12645–12649

91
Wright A T, Anslyn E V. Differential receptor arrays and assays for solution-based molecular recognition. Chemical Society Reviews, 2006, 35(1): 14–28

92
Sharaf M A, Illman D L, Kowalski B R. Chemometrics. New York: Wiley, 1986

93
Rout B, Milko P, Iron M A, Motiei L, Margulies D. Authorizing multiple chemical passwords by a combinatorial molecular keypad lock. Journal of the American Chemical Society, 2013, 135(41): 15330–15333

94
Chen S, Guo Z, Zhu S, Shi W E, Zhu W. A multiaddressable photochromic bisthienylethene with sequence-dependent responses: construction of an INHIBIT logic gate and a keypad lock. ACS Applied Materials & Interfaces, 2013, 5(12): 5623–5629

95
Rout B, Motiei L, Margulies D.Combinatorial fluorescent molecular sensors: The road to differential sensing at the molecular level. Synlett, 2014, 25: A–E

96
Margulies D, Felder C E, Melman G, Shanzer A. A molecular keypad lock: a photochemical device capable of authorizing password entries. Journal of the American Chemical Society, 2007, 129(2): 347–354

97
de Silva A P, Gunaratne H Q N, McCoy C P. Direct visual indication of pH windows: ‘off-on-off’ fluorescent PET (photoinduced electron transfer) sensors/switches. Chemical Communications, 1996, (21): 2399–2400

98
de Silva S A, Zavaleta A, Baron D E, Allam O, Isidor E V, Kashimura N, Percarpio J M. A fluorescent photoinduced electron transfer sensor for cations with an off-on-off proton switch. Tetrahedron Letters, 1997, 38(13): 2237–2240

99
Pais V F, Lineros M, López-Rodríguez R, El-Sheshtawy H S, Fernández R, Lassaletta J M, Ros A, Pischel U. Preparation and pH-switching of fluorescent borylated arylisoquinolines for multilevel molecular logic. The Journal of Organic Chemistry, 2013, 78(16): 7949–7961

100
Callan J F, de Silva A P, Ferguson J, Huxley A J, O'Brien A M. Fluorescent photoionic devices with two receptors and two switching mechanisms: applications to pH sensors and implications for metal ion detection. Tetrahedron, 2004, 60(49): 11125–11131

101
Morawetz H. Difficulties in the emergence of the polymer concept — an essay. Angewandte Chemie International Edition, 1987, 26(2): 93–97

102
Ratner T, Reany O, Keinan E. Encoding and processing of alphanumeric information by chemical mixtures. ChemPhysChem, 2009, 10(18): 3303–3309

103
Wu Y, Xie Y, Zhang Q, Tian H, Zhu W, Li A D Q. Quantitative photoswitching in bis(dithiazole) ethene enables modulation of light for encoding optical signals. Angewandte Chemie International Edition, 2014, 53(8): 2090–2094

Outlines

/