Cellulose nanofiber-enhanced MXene screen-printing inks: optimizing printability and coating mechanical properties

Genrui Xu , Shiyi Feng , Ye Feng , Binxia Chen , Zhenming Chen , Peng Li , Canhui Lu , Zehang Zhou

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (11) : 109

PDF (3794KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (11) : 109 DOI: 10.1007/s11705-025-2612-8
RESEARCH ARTICLE

Cellulose nanofiber-enhanced MXene screen-printing inks: optimizing printability and coating mechanical properties

Author information +
History +
PDF (3794KB)

Abstract

The rapid advancement of flexible electronics creates an urgent demand for high-performance printed electronic materials. MXene-based inks have been widely studied and used for screen-printing electronics, while they usually suffer from poor screen-printability and inadequate mechanical properties of the printed coatings. Therefore, we incorporate 2,2,6,6-tetramethylpiperidinooxy oxidized cellulose nanofibers into MXene ink to regulate its rheology and enhance printability on both porous A4 paper and compact polyethylene terephthalate substrates. The introduction of cellulose enables precise control over the rheology and microstructure of the resultant MXene coatings. Critically, the strong interfacial hydrogen bonding and physical entanglement between cellulose and MXene contribute to the substantial enhancements of the mechanical properties and structural stability of the resultant composite coatings, where a remarkable 9.04-fold increase of hardness and a 1.74-fold increase of Young’s modulus are achieved. The interfacial binding strength between the coating and substrate is also well enhanced with the anchoring of cellulose. This work thereby presents a promising strategy for the design and fabrication of flexible screen-printed electronics.

Graphical abstract

Keywords

MXene / cellulose nanofibers / printability / structure regulation / mechanical properties

Cite this article

Download citation ▾
Genrui Xu, Shiyi Feng, Ye Feng, Binxia Chen, Zhenming Chen, Peng Li, Canhui Lu, Zehang Zhou. Cellulose nanofiber-enhanced MXene screen-printing inks: optimizing printability and coating mechanical properties. Front. Chem. Sci. Eng., 2025, 19(11): 109 DOI:10.1007/s11705-025-2612-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lim K R G , Shekhirev M , Wyatt B C , Anasori B , Gogotsi Y , Seh Z W . Fundamentals of MXene synthesis. Nature Synthesis, 2022, 1(8): 601–614

[2]

Tian W , VahidMohammadi A , Reid M S , Wang Z , Ouyang L , Erlandsson J , Pettersson T , Wågberg L , Beidaghi M , Hamedi M M . Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Advanced Materials, 2019, 31(41): 1902977

[3]

Shuck C E , Gogotsi Y . Taking MXenes from the lab to commercial products. Chemical Engineering Journal, 2020, 401: 125786

[4]

Carey M , Barsoum M . MXene polymer nanocomposites: a review. Materials Today Advances, 2021, 9: 100120

[5]

Wang J , Shen M , Liu Z , Wang W . MXene materials for advanced thermal management and thermal energy utilization. Nano Energy, 2022, 97: 107177

[6]

Li L , Shi M , Liu X , Jin X , Cao Y , Yang Y , Wang W , Wang J . Ultrathin titanium carbide (MXene) films for high-temperature thermal camouflage. Advanced Functional Materials, 2021, 31(35): 2101381

[7]

Dai Y , Fang H , Lu Z , Yang Z , Wei Y . Toughening of vinyl ester resins by two-dimensional MXene nanosheets. Frontiers of Chemical Science and Engineering, 2022, 16(11): 1651–1658

[8]

Chen L , Mai T , Guo Z , Liu Q , Lang J , Ma M . 3D-printed MXene-based gradient framework for enhanced anti-reflection performance and excellent electromagnetic interference shielding with multi-scene adaptability. Chemical Engineering Journal, 2025, 513: 162871

[9]

Chen L , Mai T , Ji X , Wang P , Qi M , Liu Q , Ding Y , Ma M . 3D printing of customizable and lightweight multilayer MXene/nanocellulose architectures for tunable electromagnetic interference shielding via direct ink writing. Chemical Engineering Journal, 2023, 476: 146652

[10]

Liu A , Qiu H , Lu X , Guo H , Hu J , Liang C , He M , Yu Z , Zhang Y , Kong J . . Asymmetric structural MXene/PBO aerogels for high-performance electromagnetic interference shielding with ultra-low reflection. Advanced Materials, 2025, 37(5): 2414085

[11]

Zhang Y , Ruan K , Guo Y , Gu J . Recent advances of MXenes-based optical functional materials. Advanced Photonics Research, 2023, 4(12): 2300224

[12]

Zhang Y , Ruan K , Zhou K , Gu J . Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Advanced Materials, 2023, 35(16): 2211642

[13]

Guo T , Zhou D , Deng S , Jafarpour M , Avaro J , Neels A , Heier J , Zhang C . Rational design of Ti3C2Tx MXene inks for conductive, transparent films. ACS Nano, 2023, 17(4): 3737–3749

[14]

Zhou Y , Zhang Y , Pang Y , Guo H , Guo Y , Li M , Shi X , Gu J . Thermally conductive Ti3C2Tx fibers with superior electrical conductivity. Nano-Micro Letters, 2025, 17(1): 235

[15]

Dillon A D , Ghidiu M J , Krick A L , Griggs J , May S J , Gogotsi Y , Barsoum M W , Fafarman A T . Highly conductive optical quality solution-processed films of 2D titanium carbide. Advanced Functional Materials, 2016, 26(23): 4162–4168

[16]

Wan S , Li X , Chen Y , Liu N , Du Y , Dou S , Jiang L , Cheng Q . High-strength scalable MXene films through bridging-induced densification. Science, 2021, 374(6563): 96–99

[17]

Fan Y , Li J , Wang S , Meng X , Jin Y , Yang N , Meng B , Li J , Liu S . Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation. Frontiers of Chemical Science and Engineering, 2021, 15(4): 882–891

[18]

Zhong Q , Li Y , Zhang G . Two-dimensional MXene-based and MXene-derived photocatalysts: recent developments and perspectives. Chemical Engineering Journal, 2021, 409: 128099

[19]

Babar Z U D , Iannotti V , Rosati G , Zaheer A , Velotta R , Della Ventura B , Álvarez-Diduk R , Merkoçi A . MXenes in healthcare: synthesis, fundamentals, and applications. Chemical Society Reviews, 2025, 54(7): 3387–3440

[20]

Zhan X , Si C , Zhou J , Sun Z . MXene and MXene-based composites: synthesis, properties, and environment-related applications. Nanoscale Horizons, 2020, 5(2): 235–258

[21]

Bi X , Li M , Zhou G , Liu C , Huang R , Shi Y , Xu B B , Guo Z , Fan W , Algadi H . . High-performance flexible all-solid-state asymmetric supercapacitors based on binder-free MXene/cellulose nanofiber anode and carbon cloth/polyaniline cathode. Nano Research, 2023, 16(5): 7696–7709

[22]

Gund G S , Park J H , Harpalsinh R , Kota M , Shin J H , Kim T I , Gogotsi Y , Park H S . MXene/polymer hybrid materials for flexible AC-filtering electrochemical capacitors. Joule, 2019, 3(1): 164–176

[23]

Ling Z , Ren C E , Zhao M Q , Yang J , Giammarco J M , Qiu J , Barsoum M W , Gogotsi Y . Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16676–16681

[24]

Boota M , Anasori B , Voigt C , Zhao M Q , Barsoum M W , Gogotsi Y . Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Advanced Materials, 2016, 28(7): 1517–1522

[25]

Abdolhosseinzadeh S , Jiang X , Zhang H , Qiu J , Zhang C J . Perspectives on solution processing of two-dimensional MXenes. Materials Today, 2021, 48: 214–240

[26]

Gong X , Huang K , Wu Y H , Zhang X S . Recent progress on screen-printed flexible sensors for human health monitoring. Sensors and Actuators A: Physical, 2022, 345: 113821

[27]

Liu L , Shen Z , Zhang X , Ma H . Highly conductive graphene/carbon black screen printing inks for flexible electronics. Journal of Colloid and Interface Science, 2021, 582: 12–21

[28]

Somalu M R , Muchtar A , Daud W R W , Brandon N P . Screen-printing inks for the fabrication of solid oxide fuel cell films: a review. Renewable & Sustainable Energy Reviews, 2017, 75: 426–439

[29]

Zhou Y , Zhang Y , Ruan K , Guo H , He M , Qiu H , Gu J . MXene-based fibers: preparation, applications, and prospects. Science Bulletin, 2024, 69(17): 2776–2792

[30]

Wang G , Zhang R , Zhang H , Cheng K . Aqueous MXene inks for inkjet-printing microsupercapacitors with ultrahigh energy densities. Journal of Colloid and Interface Science, 2023, 645: 359–370

[31]

Liu S , Low Z X , Xie Z , Wang H . TEMPO-oxidized cellulose nanofibers: a renewable nanomaterial for environmental and energy applications. Advanced Materials Technologies, 2021, 6(7): 2001180

[32]

Kim J H , Lee D , Lee Y H , Chen W , Lee S Y . Nanocellulose for energy storage systems: beyond the limits of synthetic materials. Advanced Materials, 2019, 31(20): 1804826

[33]

Berto G L , Arantes V . Kinetic changes in cellulose properties during defibrillation into microfibrillated cellulose and cellulose nanofibrils by ultra-refining. International Journal of Biological Macromolecules, 2019, 127: 637–648

[34]

Wang Q , Xia T , Jia X , Zhao J , Li Q , Ao C , Deng X , Zhang X , Zhang W , Lu C . Honeycomb-structured carbon aerogels from nanocellulose and skin secretion of Andrias davidianus for highly compressible binder-free supercapacitors. Carbohydrate Polymers, 2020, 245: 116554

[35]

Wang Z , Lee Y H , Kim S W , Seo J Y , Lee S Y , Nyholm L . Why cellulose-based electrochemical energy storage devices. Advanced Materials, 2021, 33(28): 2000892

[36]

Wu Z , Feng Y , Deng P , Xu D , Li P , Chen Z , Lu C , Zhou Z . Regulating the micro-nano structure of cellulose nanofibers reinforced polyvinyl alcohol composites for enhanced mechanical and barrier properties via one-pot wet milling. Frontiers of Chemical Science and Engineering, 2025, 19(8): 68

[37]

Hou D , Yuan P , Feng Z , An M , Li P , Liu C , Yang M . Sustainable conversion regenerated cellulose into cellulose oleate by sonochemistry. Frontiers of Chemical Science and Engineering, 2023, 17(8): 1096–1108

[38]

Su Z , Yang Y , Huang Q , Chen R , Ge W , Fang Z , Huang F , Wang X . Designed biomass materials for “green” electronics: a review of materials, fabrications, devices, and perspectives. Progress in Materials Science, 2022, 125: 100917

[39]

Zhan Z , Song Q , Zhou Z , Lu C . Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2019, 7(32): 9820–9829

[40]

Wang L , Song P , Lin C , Kong J , Gu J . 3D shapeable, superior electrically conductive cellulose nanofibers/Ti3C2Tx MXene aerogels/epoxy nanocomposites for promising EMI shielding. Research, 2020, 2020: 4093732

[41]

Deng P , Li N , Feng Y , Liu Z , Lu C , Zhou Z . Antioxidant MXene/TA/nanocellulose hybrid ink for screen printing of multifunctional smart textiles with enhanced antibacterial performance. Industrial & Engineering Chemistry Research, 2025, 64(3): 1597–1608

[42]

Deng P , Feng S , Lu C , Zhou Z . Dual cross-linked MXene/cellulose nanofiber/nickel alginate film with improved mechanical properties and electromagnetic interference shielding performance. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1460–1469

[43]

Hao S , Fu Q , Meng L , Xu F , Yang J . A biomimetic laminated strategy enabled strain-interference free and durable flexible thermistor electronics. Nature Communications, 2022, 13(1): 6472

[44]

Cao W T , Ma C , Mao D S , Zhang J , Ma M G , Chen F . MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Advanced Functional Materials, 2019, 29(51): 1905898

[45]

Chen Y , Li Y , Liu Y , Chen P , Zhang C , Qi H . Holocellulose nanofibril-assisted intercalation and stabilization of Ti3C2Tx MXene inks for multifunctional sensing and EMI shielding applications. ACS Applied Materials & Interfaces, 2021, 13(30): 36221–36231

[46]

Forti E S , El Awad Azrak S M , Ng X Y , Cho W , Schueneman G T , Moon R J , Fox D M , Youngblood J P . Mechanical enhancement of cellulose nanofibril (CNF) films through the addition of water-soluble polymers. Cellulose, 2021, 28(10): 6449–6465

[47]

Cao W , Chen F , Zhu Y , Zhang Y , Jiang Y , Ma M , Chen F . Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano, 2018, 12(5): 4583–4593

[48]

Liu F , Yang H , Feng X . Research progress in preparation, properties, and applications of biomimetic organic-inorganic composites with “brick-and-mortar” structure. Materials, 2023, 16(11): 4094

[49]

Xin W , Xi G , Cao W , Ma C , Liu T , Ma M , Bian J . Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding. RSC Advances, 2019, 9(51): 29636–29644

[50]

Zeng Z , Wang C , Siqueira G , Han D , Huch A , Abdolhosseinzadeh S , Heier J , Nüesch F , Zhang C , Nyström G . Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Advanced Science, 2020, 7(15): 2000979

[51]

Zeng Z , Mavrona E , Sacre D , Kummer N , Cao J , Müller L A , Hack E , Zolliker P , Nyström G . Terahertz birefringent biomimetic aerogels based on cellulose nanofibers and conductive nanomaterials. ACS Nano, 2021, 15(4): 7451–7462

[52]

Cao J , Zhou Z , Song Q , Chen K , Su G , Zhou T , Zheng Z , Lu C , Zhang X . Ultrarobust Ti3C2Tx MXene-based soft actuators via bamboo-inspired mesoscale assembly of hybrid nanostructures. ACS Nano, 2020, 14(6): 7055–7065

[53]

Zhou G , Li M , Liu C , Wu Q , Mei C . 3D Printed Ti3C2Tx MXene/cellulose nanofiber architectures for solid-state supercapacitors: ink rheology, 3D printability, and electrochemical performance. Advanced Functional Materials, 2022, 32(14): 2109593

[54]

Feng S , Yi Y , Chen B , Deng P , Zhou Z , Lu C . Rheology-guided assembly of a highly aligned MXene/cellulose nanofiber composite film for high-performance electromagnetic interference shielding and infrared stealth. ACS Applied Materials & Interfaces, 2022, 14(31): 36060–36070

[55]

Han M , Yin X , Wu H , Hou Z , Song C , Li X , Zhang L , Cheng L . Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Applied Materials & Interfaces, 2016, 8(32): 21011–21019

[56]

Zhang Y Z , Wang Y , Jiang Q , El-Demellawi J K , Kim H , Alshareef H N . MXene printing and patterned coating for device applications. Advanced Materials, 2020, 32(21): 1908486

[57]

Yu L , Fan Z , Shao Y , Tian Z , Sun J , Liu Z . Versatile N-doped MXene ink for printed electrochemical energy storage application. Advanced Energy Materials, 2019, 9(34): 1901839

[58]

Akuzum B , Maleski K , Anasori B , Lelyukh P , Alvarez N J , Kumbur E C , Gogotsi Y . Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing MXenes. ACS Nano, 2018, 12(3): 2685–2694

[59]

Li M C , Wu Q , Moon R J , Hubbe M A , Bortner M J . Rheological aspects of cellulose nanomaterials: governing factors and emerging applications. Advanced Materials, 2021, 33(21): 2006052

[60]

Su G , Zhou T , Liu X , Ma Y . Micro-dynamics mechanism of the phase transition behavior of poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate) hydrogels revealed by two-dimensional correlation spectroscopy. Polymer Chemistry, 2017, 8(5): 865–878

[61]

Yang L , Weng W , Fei X , Pan L , Li X , Xu W , Hu Z , Zhu M . Revealing the interrelation between hydrogen bonds and interfaces in graphene/PVA composites towards highly electrical conductivity. Chemical Engineering Journal, 2020, 383: 123126

[62]

Hatter C B , Shah J , Anasori B , Gogotsi Y . Micromechanical response of two-dimensional transition metal carbonitride (MXene) reinforced epoxy composites. Composites Part B: Engineering, 2020, 182: 107603

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3794KB)

301

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/