Coordination crosslinking engineering of alkynyl-based polyimide membranes for H2/CO2 separation

Bingbing Gao , Qi Zhang , Wei Zhang , Yunxiang Bai , Chunfang Zhang , Yang Liu , Lijun Liang , Liangliang Dong

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (11) : 108

PDF (2311KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (11) : 108 DOI: 10.1007/s11705-025-2611-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Coordination crosslinking engineering of alkynyl-based polyimide membranes for H2/CO2 separation

Author information +
History +
PDF (2311KB)

Abstract

Polyimide membranes, owing to their robust polymer backbone and facile structural tunability, are extensively used for H2/CO2 separation. However, efficient H2 separation remains challenging because of the wide pore size distribution within the chain-packed structure of conventional polyimides. Here, we propose a coordination crosslinking engineering strategy, where Pd2+ is incorporated into an alkynyl-based polyimide containing carboxyl groups to generate coordination cross-linked networks in situ. The formed coordination bonds significantly reduce the interchain d-spacing and restrict the mobility of the polymer chains, thereby enhancing size-sieving ability. Additionally, the presence of Pd2+ significantly increases the affinity of membrane for H2. Based on their synergistic effect, the optimized EBPA-TB-COOH@Pd2+-6 membrane (EBPA: 4,4′-(ethyne-1,2-diyl) diphthalic anhydride; EBPA-TB-COOH: alkynyl-based polyimide polymer) exhibits an unprecedented combination of high H2 permeability (512.5 bar) and excellent H2/CO2 selectivity (30.4), surpassing most polyimide membranes reported to date. Furthermore, the coordination crosslinking networks endow the membranes with high and stable H2/CO2 separation performance under a wide operating pressure range (1 to 6 bar). This coordination crosslinking engineering strategy offers an effective approach for designing next-generation polyimide membranes for hydrogen recovery and purification.

Graphical abstract

Keywords

EBPA-TB-COOH / H2/CO2 separation / coordination crosslinking / alkynyl-based polyimide / hydrogen recovery

Cite this article

Download citation ▾
Bingbing Gao, Qi Zhang, Wei Zhang, Yunxiang Bai, Chunfang Zhang, Yang Liu, Lijun Liang, Liangliang Dong. Coordination crosslinking engineering of alkynyl-based polyimide membranes for H2/CO2 separation. Front. Chem. Sci. Eng., 2025, 19(11): 108 DOI:10.1007/s11705-025-2611-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmad T , Zhang D D . A critical review of comparative global historical energy consumption and future demand: the story told so far. Energy Reports, 2020, 6: 1973–1991

[2]

Jamil M , Ahmad F , Jeon Y J . Renewable energy technologies adopted by the UAE: prospects and challenges—a comprehensive overview. Renewable & Sustainable Energy Reviews, 2016, 55: 1181–1194

[3]

Marbán G , Valdés-Solís T . Towards the hydrogen economy. International Journal of Hydrogen Energy, 2007, 32(12): 1625–1637

[4]

Baker R W . Future directions of membrane gas separation technology. Industrial & Engineering Chemistry Research, 2002, 41(6): 1393–1411

[5]

Koros W J , Zhang C . Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 2017, 16(3): 289–297

[6]

Li P Y , Wang Z , Qiao Z H , Liu Y N , Cao X C , Li W , Wang J X , Wang S C . Recent developments in membranes for efficient hydrogen purification. Journal of Membrane Science, 2015, 495: 130–168

[7]

Kim K J , Jo J H , An S J , Yu S M , Kim Y S , Park S , Chi W S . Facile metal-ion infiltration into polyimide membranes with coordination crosslinking for efficient gas separation. Separation and Purification Technology, 2023, 323: 124330

[8]

Okamoto Y , Chiang H C , Fang M F , Galizia M , Merkel T , Yavari M , Nguyen H , Lin H Q . Perfluorodioxolane polymers for gas separation membrane applications. Membranes, 2020, 10(12): 394

[9]

Liu Z Y , Liu Y , Qiu W L , Koros W J . Molecularly engineered 6FDA-based polyimide membranes for sour natural gas separation. Angewandte Chemie International Edition, 2020, 59(35): 14877–14883

[10]

Sanaeepur H , Amooghin A E , Bandehali S , Moghadassi A , Matsuura T , Van der Bruggen B . Polyimides in membrane gas separation: monomer’s molecular design and structural engineering. Progress in Polymer Science, 2019, 91: 80–125

[11]

Qiu W L , Xu L R , Chen C C , Paul D R , Koros W J . Gas separation performance of 6FDA-based polyimides with different chemical structures. Polymer, 2013, 54(22): 6226–6235

[12]

Ma H , Liu H H , Tian F , Gao B B , Liang L J , Liu Y , Gao P , Cao X Z , Bai Y X , Zhang C F . . Thermally cross-linked alkynyl-based polyimide membranes for efficient helium separation and physical aging control. Chemical Engineering Science, 2024, 290: 119907

[13]

Hu L Q , Bui V T , Krishnamurthy A , Fan S H , Guo W J , Pal S , Chen X Y , Zhang G Y , Ding Y F , Singh R P . . Tailoring sub-3.3 Å ultra micropores in advanced carbon molecular sieve membranes for blue hydrogen production. Science Advances, 2022, 8(10): eabl8160

[14]

Gao B B , Peng Y R , Wu M , Ma H , Sun J C , Zhang P , Cao X C , Ouyang L K , Fu X B , Zhang C F . . Three-in-one polyimide-based blended membrane for upgrading helium separation performance and physical aging resistance. Advanced Membrane, 2025, 5: 100139

[15]

Lai W K , Jiao Y , Liu Y , Fang W X , Wang Z G , Guiver M D , Jin J . Engineering ultra-small Ag nanoparticles with enhanced activity in microporous polymer membranes for C2H4/C2H6 separation. Advanced Materials, 2025, 37(15): 2416851

[16]

Hatlevik O , Gade S K , Keeling M K , Thoen P M , Davidson A P , Way J D . Palladium and palladium alloy membranes for hydrogen separation and production: history, fabrication strategies, and current performance. Separation and Purification Technology, 2010, 73(1): 59–64

[17]

Vanherck K , Koeckelberghs G , Vankelecom I F J . Crosslinking polyimides for membrane applications: a review. Progress in Polymer Science, 2013, 38(6): 874–896

[18]

Liu Y , Wang R , Chung T S . Chemical cross-linking modification of polyimide membranes for gas separation. Journal of Membrane Science, 2001, 189(2): 231–239

[19]

Shao L , Chung T S , Goh S H , Pramoda K P . Transport properties of cross-linked polyimide membranes induced by different generations of diaminobutane (DAB) dendrimers. Journal of Membrane Science, 2004, 238(1-2): 153–163

[20]

Zhu L X , Swihart M T , Lin H Q . Tightening polybenzimidazole (PBI) nanostructure via chemical cross-linking for membrane H2/CO2 separation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(37): 19914–19923

[21]

Shan M X , Liu X L , Wang X R , Liu Z L , Iziyi H , Ganapathy S , Gascon J , Kapteijn F . Novel high performance poly(p-phenylene benzobisimidazole) (PBDI) membranes fabricated by interfacial polymerization for H2 separation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(15): 8929–8937

[22]

McKeown N B , Budd P M . Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis, and hydrogen storage. Chemical Society Reviews, 2006, 35(8): 675–683

[23]

Omidvar M , Nguyen H , Huang L , Doherty C M , Hill A J , Stafford C M , Feng X S , Swihart M T , Lin H Q . Unexpectedly strong size-sieving ability in carbonized polybenzimidazole for membrane H2/CO2 separation. ACS Applied Materials & Interfaces, 2019, 11(50): 47365–47372

[24]

Ma X H , Li K H , Zhu Z Y , Dong H , Lv J , Wang Y G , Pinnau I , Li J X , Chen B W , Han Y . High-performance polymer molecular sieve membranes prepared by direct fluorination for efficient helium enrichment. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(34): 18313–18322

[25]

Han W J , Rao D W , Gao H Q , Yang X D , Fan H W , Li C X , Dong L L , Meng H . Green-solvent-processable biodegradable poly(lactic acid) nanofibrous membranes with bead-on-string structure for effective air filtration: “kill two birds with one stone”. Nano Energy, 2022, 97: 107237

[26]

Liu H H , Liang L J , Tian F , Xi X G , Zhang Y Q , Zhang P , Cao X Z , Bai Y X , Zhang C F , Dong L L . Scalable preparation of ultraselective and highly permeable fully aromatic polyamide nanofiltration membranes for antibiotic desalination. Angewandte Chemie International Edition, 2024, 63(23): e202402509

[27]

Nara M , Tanokura M . Infrared spectroscopic study of the metal-coordination structures of calcium-binding proteins. Biochemical and Biophysical Research Communications, 2008, 369(1): 225–239

[28]

Zhao G J , Li L L , Gao H Q , Zhao Z J , Pang Z F , Pei C L , Qu Z , Dong L L , Rao D W , Caro J . . Polyamide nanofilms through a non-isothermal-controlled interfacial polymerization. Advanced Functional Materials, 2024, 34(18): 2313026

[29]

Dong L L , Zhang C F , Bai Y X , Shi D J , Li X J , Zhang H J , Chen M Q . High-performance PEBA2533-functional MMT mixed matrix membrane containing high-speed facilitated transport channels for CO2/N2 separation. ACS Sustainable Chemistry & Engineering, 2016, 4(6): 3486–3496

[30]

Dong L L , Zhang W H , Qu Z , Wan C , Yao Z , Xu J B , Kang X T , Bai Y X , Zhang C F . Cardo-type porous organic nanospheres: tailoring interfacial compatibility in thermally rearranged mixed matrix membranes for improved hydrogen purification. Journal of Membrane Science, 2020, 612: 118414

[31]

Kakihana M , Nagumo T , Okamoto M , Kakihana H . Coordination structures for uranyl carboxylate complexes in aqueous-solution studied by IR and C13 NMR-spectra. Journal of Physical Chemistry, 1987, 91(24): 6128–6136

[32]

Liu Z Y , Qiu W L , Quan W Y , Liu Y , Koros W J . Fine-tuned thermally cross-linkable 6FDA-based polyimide membranes for aggressive natural gas separation. Journal of Membrane Science, 2021, 635: 119474

[33]

Iwasa R , Suizu T , Yamaji H , Yoshioka T , Nagai K . Gas separation in polyimide membranes with molecular sieve-like chemical/physical dual crosslink elements onto the top of surface. Journal of Membrane Science, 2018, 550: 80–90

[34]

Huang M H , Lu K , Wang Z G , Bi X Y , Zhang Y T , Jin J . Thermally cross-linked amidoxime-functionalized polymers of intrinsic microporosity membranes for highly selective hydrogen separation. ACS Sustainable Chemistry & Engineering, 2021, 9(28): 9426–9435

[35]

Joseph J , Jemmis E D . Red-, blue-, or no-shift in hydrogen bonds: a unified explanation. Journal of the American Chemical Society, 2007, 129(15): 4620–4632

[36]

Zhang Z G , Ren X L , Huo G L , Kang S Y , Wang Z G , Li N W . Tuning interchain cavity of fluorinated polyimide by DABA for improved gas separation performance. Journal of Membrane Science, 2023, 675: 121485

[37]

Pan Y , Liu H H , Huang Z Q , Zhang W H , Gao H Q , Liang L J , Dong L L , Meng H . Membranes based on covalent organic frameworks through green and scalable interfacial polymerization using ionic liquids for antibiotic desalination. Angewandte Chemie International Edition, 2024, 63(4): e202316315

[38]

Putz B , Milassin G , Butenko Y , Völker B , Gammer C , Semprimoschnig C , Cordill M J . Combined TEM and XPS studies of metal-polymer interfaces for space applications. Surface and Coatings Technology, 2017, 332: 368–375

[39]

Ren Y X , Chong B Y , Xu W , Zhang Z Q , Liu L , Wu Y Z , Liu Y T , Jiang H F , Liang X , Wu H . Coordination-driven structure reconstruction in polymer of intrinsic microporosity membranes for efficient propylene/propane separation. Innovation, 2022, 3(6): 100334

[40]

Bi X Y , Zhang Y A , Zhang F , Zhang S X , Wang Z G , Jin J . MOF nanosheet-based mixed matrix membranes with metal-organic coordination interfacial interaction for gas separation. ACS Applied Materials & Interfaces, 2020, 12(43): 49101–49110

[41]

Wu M L , Zhang X , Zhao Y , Yang C P , Jing S S , Wu Q S , Brozena A , Miller J T , Libretto N J , Wu T P . . A high-performance hydroxide exchange membrane enabled by Cu2+-crosslinked chitosan. Nature Nanotechnology, 2022, 17(6): 629–636

[42]

Ahmad M Z , Asuquo E D , Rico-Martinez S , Alshurafa M , Orts-Mercadillo V , Devarajan A , Lozano A E , Foster A B , Budd P M . Effects of metal acetate addition on the gas separation properties of polymers of intrinsic microporosity PIM-1 and PIM-Py. Polymer, 2024, 292: 126556

[43]

Dai G L , Liu J H . A DFT study on structures and electronic properties of iron(II) terpyridyl triphenylamine derivatives. Russian Journal of Physical Chemistry A: Focus on Chemistry, 2021, 95(6): 1177–1184

[44]

Mackenzie C F , Spackman P R , Jayatilaka D , Spackman M A . Crystal explorer model energies and energy frame-works: extension to metal coordination compounds, organic salts, solvates, and open-shell systems. IUCrJ, 2017, 4(5): 575–587

[45]

Yang K , Ling H L , Jiang H , Luo J Z , Zong X P , Xue S . Enhanced gas separation performance of polyimide membranes through nucleophilic ring-opening crosslinking with diepoxides. Journal of Membrane Science, 2025, 716: 123534

[46]

Cui L L , Qiu W L , Paul D R , Koros W J . Responses of 6FDA-based polyimide thin membranes to CO2 exposure and physical aging as monitored by gas permeability. Polymer, 2011, 52(24): 5528–5537

[47]

Li S , McGinness H , Wang T , Guo R L . Crosslinked Matrimid®-like polyimide membranes with unimodal network structure for enhanced stability and gas separation performance. Polymer, 2021, 237(9): 124323

[48]

Li P R , Xiao G Y , Hou M J , Lu Y H , Li L , Wang T H . Boosted gas separation performances of polyimide and thermally rearranged membranes by Fe-doping. Chemical Engineering Journal, 2024, 499: 156108

[49]

Xiao Y Y , Lei X F , Zhang Z X , Chen S Y , Xiong G , Ma X H , Zhang Q Y . Carbazole-based polyimide membranes with hydrogen-bonding interactions for gas separation. Macromolecules, 2024, 57(12): 5941–5957

[50]

Abdulhamid M A . Tröger’s base-derived dianhydride as a promising contorted building block for polyimide-based membranes for gas separation. Separation and Purification Technology, 2023, 310: 123208

[51]

Ghanem B S , McKeown N B , Budd P M , Selbie J D , Fritsch D . High-performance membranes from polyimides with intrinsic microporosity. Advanced Materials, 2008, 20(14): 2766–2771

[52]

Tanaka K , Okano M , Toshino H , Kita H , Okamoto K I . Effect of methyl substituents on permeability and permselectivity of gases in polyimides preparedfrom methyl-substituted phenylenediamines. Journal of Polymer Science Part B: Polymer Physics, 1992, 30(8): 907–914

[53]

Pal N , Agarwal M . Performance evaluation of biopolymer mixed matrix membrane for CO2/H2 separation. International Journal of Hydrogen Energy, 2023, 48(96): 37762–37773

[54]

Swaidan R , Al-Saeedi M , Ghanem B , Litwiller E , Pinnau I . Rational design of intrinsically ultramicroporous polyimides containing bridgehead-substituted triptycene for highly selective and permeable gas separation membranes. Macromolecules, 2014, 47(15): 5104–5114

[55]

Lu Z Y , Jian L F , Zhang J Y , Du Q Y , Yuan Z F , Tan W Y , Min Y G . Intrinsically microporous polyimides based on a rigid-soft structure for hydrogen separation. ACS Applied Materials & Interfaces, 2025, 17(6): 9786–9796

[56]

Wang S Y , Zhang J F , Sun Y C , Fan F X , Zhao Q Z , He G H , Ma C H . Thermally rearranged polyimide membranes incorporating triptycenes for improved CO2 capture and hydrogen separation. Separation and Purification Technology, 2025, 364: 132302

[57]

Low B T , Xiao Y C , Chung T S , Liu Y . Simultaneous occurrence of chemical grafting, cross-linking, and etching on the surface of polyimide membranes and their impact on H2/CO2 separation. Macromolecules, 2008, 41(4): 1297–1309

[58]

Wu L , Chen X L , Zhang Z G , Xu S , Ma C H , Li N W . Enhanced molecular selectivity and plasticization resistance in ring-opened Tröger’s base polymer membranes. Journal of Membrane Science, 2021, 634: 119399

[59]

Wang C , Cai Z L , Xie W , Jiao Y , Liu L , Gong L L , Zhang Q W , Ma X H , Zhang H J , Luo S J . Finely tuning the microporosity in dual thermally crosslinked polyimide membranes for plasticization resistance gas separations. Journal of Membrane Science, 2022, 659: 120769

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2311KB)

Supplementary files

FCE-25064-OF-GB_suppl_1

242

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/