Local hydrophobicity enhanced hydrogen evolution over NiCo2O4/CdS photocatalyst

Xuan Xiang , Yuyin Mao , Minghui Zhang , Hanxiao Wang , Xiangdong Xue , Jian Tian , Jian Liu

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (11) : 106

PDF (1609KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (11) : 106 DOI: 10.1007/s11705-025-2609-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Local hydrophobicity enhanced hydrogen evolution over NiCo2O4/CdS photocatalyst

Author information +
History +
PDF (1609KB)

Abstract

Addressing electron and gas transfer dynamics is pivotal for photocatalytic hydrogen evolution. In this work, a hydrophilic NiCo2O4/CdS heterojunction was incorporated with hydrophobic SiO2 to enhance photocatalytic hydrogen evolution performance. The hydrophilic/hydrophobic NiCo2O4/CdS/SiO2 photocatalyst exhibited a hydrogen production rate of 11.78 mmol·g−1·h−1, outperforming the 8.15 mmol·g−1·h−1 of NiCo2O4/CdS heterojunction. The heterojunction significantly enhances photogenerated charge-carrier separation efficiency, while the hydrophobic SiO2 facilitates gas evolution by mitigating surface bubble aggregation. The work here provides a facile route for developing photocatalysts toward practical hydrogen evolution.

Graphical abstract

Keywords

hydrophilicity / hydrophobicity / hydrogen evolution / photocatalytic / gas transfer

Cite this article

Download citation ▾
Xuan Xiang, Yuyin Mao, Minghui Zhang, Hanxiao Wang, Xiangdong Xue, Jian Tian, Jian Liu. Local hydrophobicity enhanced hydrogen evolution over NiCo2O4/CdS photocatalyst. Front. Chem. Sci. Eng., 2025, 19(11): 106 DOI:10.1007/s11705-025-2609-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nishiyama H , Yamada T , Nakabayashi M , Maehara Y , Yamaguchi M , Kuromiya Y , Nagatsuma Y , Tokudome H , Akiyama S , Watanabe T . . Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature, 2021, 598(7880): 304–307

[2]

Wu Y , Li J , Chong W K , Pan Z , Wang Q . Novel materials and techniques for photocatalytic water splitting developed by professor Kazunari Domen. Chinese Journal of Catalysis, 2025, 68: 1–50

[3]

Li X , Li Y , Guo X , Jin Z . Design and synthesis of ZnCo2O4/CdS for substantially improved photocatalytic hydrogen production. Frontiers of Chemical Science and Engineering, 2023, 17(5): 606–616

[4]

Cheng J , Cheng B , Xu J , Yu J , Cao S . Organic-inorganic S-scheme heterojunction photocatalysts: design, synthesis, applications, and challenges. eScience, 2025, 5(3): 100354

[5]

Ma X , Cheng H . Self-introduction of carbon nitride quantum dots into carbon nitride planar structure for enhanced photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2023, 339: 123101

[6]

Guo L , Gao J , Li M , Xie Y , Chen H , Wang S , Li Z , Wang X , Zhou W . Synergy of defect engineering and curvature effect for porous graphite carbon nitride nanotubes promoted photocatalytic hydrogen evolution. EcoEnergy, 2023, 1(2): 437–447

[7]

Gunawan D , Zhang J , Li Q , Toe C Y , Scott J , Antonietti M , Guo J , Amal R . Materials advances in photocatalytic solar hydrogen production: integrating systems and economics for a sustainable future. Advanced Materials, 2024, 36(42): 2404618

[8]

Shi M , Wu X , Zhao Y , Li R , Li C . Unlocking the key to photocatalytic hydrogen production using electronic mediators for Z-scheme water splitting. Journal of the American Chemical Society, 2025, 147(4): 3641–3649

[9]

Megía P J , Vizcaíno A J , Calles J A , Carrero A . Hydrogen production technologies: from fossil fuels toward renewable sources: a mini review. Energy & Fuels, 2021, 35(20): 16403–16415

[10]

Savateev O , Zhuang J , Wan S , Song C , Cao S , Tang J . Photocatalytic water splitting versus H2 generation coupled with organic synthesis: a large critical review. Chinese Journal of Catalysis, 2025, 70: 44–114

[11]

An S , Zhang L , Ding X , Xue Y , Tian J , Qin Y , You J , Wang X , Zhang H . A general strategy for the enhanced H2 production performance of CdS/noble metal sulfide nanorods photocatalysts by cation exchange. Journal of Colloid and Interface Science, 2024, 664: 848–856

[12]

Wang S , Ai Z , Niu X , Yang W , Kang R , Lin Z , Waseem A , Jiao L , Jiang H . Linker engineering of sandwich-structured metal-organic framework composites for optimized photocatalytic H2 production. Advanced Materials, 2023, 35(39): 2302512

[13]

Li J , Wang Y , Song H , Guo Y , Hu S , Zheng H , Zhang S , Li X , Gao Q , Li C . . Photocatalytic hydrogen under visible light by nitrogen-doped rutile titania graphitic carbon nitride composites: an experimental and theoretical study. Advanced Composites and Hybrid Materials, 2023, 6(2): 83

[14]

Chong W K , Ng B J , Kong X Y , Tan L L , Putri L K , Chai S P . Non-metal doping induced dual p-n charge properties in a single ZnIn2S4 crystal structure provoking charge transfer behaviors and boosting photocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2023, 325: 122372

[15]

Li Z , Li R , Jing H , Xiao J , Xie H , Hong F , Ta N , Zhang X , Zhu J , Li C . Blocking the reverse reactions of overall water splitting on a Rh/GaN-ZnO photocatalyst modified with Al2O3. Nature Catalysis, 2023, 6(1): 80–88

[16]

Tao X , Zhao Y , Wang S , Li C , Li R . Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chemical Society Reviews, 2022, 51(9): 3561–3608

[17]

Xing F , Xue X , Li J , Liu J , Wang W , Dong W , Yuan H , Liu J . Sustainable photocatalytic biological cofactor regeneration fueled by selective alcohol oxidation over polarized ZnIn2S4. ACS Catalysis, 2024, 14(15): 11366–11377

[18]

Jia G , Sun F , Zhou T , Wang Y , Cui X , Guo Z , Fan F , Yu J C . Charge redistribution of a spatially differentiated ferroelectric Bi4Ti3O12 single crystal for photocatalytic overall water splitting. Nature Communications, 2024, 15(1): 4746

[19]

Wang J , Lin S , Tian N , Ma T , Zhang Y , Huang H . Nanostructured metal sulfides: classification, modification strategy, and solar-driven CO2 reduction application. Advanced Functional Materials, 2021, 31(9): 2008008

[20]

Fan X , Song X , Zhang Y , Li Z . Unveiling the influence of hydrophobicity on inhibiting hydrogen dissociation for enhanced photocatalytic hydrogen evolution of covalent organic frameworks. Journal of Colloid and Interface Science, 2024, 673: 836–846

[21]

Zhou H , Sheng X , Ding Z , Chen X , Zhang X , Feng X , Jiang L . Liquid-liquid-solid triphase interface microenvironment mediates efficient photocatalysis. ACS Catalysis, 2022, 12(21): 13690–13696

[22]

Hui Y , Wang L , Xiao F S . Catalysis enhanced by catalyst wettability. ACS Nano, 2025, 19(8): 7617–7633

[23]

Lu Z , Xu Y , Zhang Z , Sun J , Ding X , Sun W , Tu W , Zhou Y , Yao Y , Ozin G A . . Wettability engineering of solar methanol synthesis. Journal of the American Chemical Society, 2023, 145(48): 26052–26060

[24]

Peng Y , Wang L , Luo Q , Cao Y , Dai Y , Li Z , Li H , Zheng X , Yan W , Yang J . . Molecular-level insight into how hydroxyl groups boost catalytic activity in CO2 hydrogenation into methanol. Chem, 2018, 4(3): 613–625

[25]

Li K , Zou S , Zhang J , Huang Y , He L , Feng X . Superhydrophobicity-enabled efficient electrocatalytic CO2 reduction at a high temperature. ACS Catalysis, 2023, 13(14): 9346–9351

[26]

Shan X , Liu J , Mu H , Xiao Y , Mei B , Liu W , Lin G , Jiang Z , Wen L , Jiang L . An engineered superhydrophilic/superaerophobic electrocatalyst composed of the supported CoMoSx chalcogel for overall water splitting. Angewandte Chemie International Edition, 2020, 59(4): 1659–1665

[27]

Feng L , Li S , Li Y , Li H , Zhang L , Zhai J , Song Y , Liu B , Jiang L , Zhu D . Super-hydrophobic surfaces: from natural to artificial. Advanced Materials, 2002, 14(24): 1857–1860

[28]

Gao X , Jiang L . Water-repellent legs of water striders. Nature, 2004, 432(7013): 36

[29]

Li A , Zhang P , Kan E , Gong J . Wettability adjustment to enhance mass transfer for heterogeneous electrocatalysis and photocatalysis. eScience, 2024, 4(1): 100157

[30]

Chen X , Sheng X , Zhou H , Liu Z , Xu M , Feng X . Hydrophobicity promoted efficient hydroxyl radical generation in visible-light-driven photocatalytic oxidation. Small, 2024, 20(24): 2310128

[31]

Huang Q S , Chu C , Li Q , Liu Q , Liu X , Sun J , Ni B J , Mao S . Three-phase interface construction on hydrophobic carbonaceous catalysts for highly active and selective photocatalytic CO2 conversion. ACS Catalysis, 2023, 13(17): 11232–11243

[32]

Huo H , Hu T , Huang C , Wu F , Wang T , Liu X , Zhang L , Ju Q , Zhong Z , Xing H . . Reconcile the contradictory wettability requirements for the reduction and oxidation half-reactions in overall CO2 photoreduction via alternately hydrophobic surfaces. Journal of Energy Chemistry, 2024, 93: 202–212

[33]

Dong Y , Wang H , Wang X , Wang H , Dong Q , Wang W , Wei X , Ren J , Liu J , Wang R . Superhydrophilic/superaerophobic NiFe with internal bubble flow channels for electrocatalytic water splitting. Chemical Engineering Journal, 2024, 488: 150953

[34]

Wang C , Lu Y , Wang Z , Liao H , Zhou W , He Y , Osman S M , An M , Asakura Y , Yamauchi Y . . Salt-assisted construction of hydrophilic carbon nitride photocatalysts with abundant water molecular adsorption sites for efficient hydrogen production. Applied Catalysis B: Environment and Energy, 2024, 350: 123902

[35]

Sun H , Fan J , Fan R , Sun P , Wang S , Wang D , Gu P , Tan W , Zhu Y . A carboxylate-based hydrophilic organic photovoltaic catalyst with a large molecular dipole moment for high-performance photocatalytic hydrogen evolution. Angewandte Chemie International Edition, 2025, 64(27): e202503792

[36]

Zhou Q , Guo Y , Zhu Y . Photocatalytic sacrificial H2 evolution dominated by micropore-confined exciton transfer in hydrogen-bonded organic frameworks. Nature Catalysis, 2023, 6(7): 574–584

[37]

Mao Y , Zhang M , Zhai G , Si S , Liu D , Song K , Liu Y , Wang Z , Zheng Z , Wang P . . Asymmetric Cu(I)–W dual-atomic sites enable C–C coupling for selective photocatalytic CO2 reduction to C2H4. Advanced Science, 2024, 11(28): 2401933

[38]

Zhang M , Mao Y , Bao X , Zhai G , Xiao D , Liu D , Wang P , Cheng H , Liu Y , Zheng Z . . Coupling benzylamine oxidation with CO2 photoconversion to ethanol over a black phosphorus and bismuth tungstate S-scheme heterojunction. Angewandte Chemie International Edition, 2023, 62(36): e202302919

[39]

Gao R , Shen R , Huang C , Huang K , Liang G , Zhang P , Li X . 2D/2D hydrogen-bonded organic frameworks/covalent organic frameworks S-scheme heterojunctions for photocatalytic hydrogen evolution. Angewandte Chemie International Edition, 2025, 64(2): e202414229

[40]

Xiao X , Li S , Zuo L , Li R , Li Z , Liu L , Fan H , Li B . Twin S-scheme heterojunction ZnO/UiO-66-NH2@ZnIn2S4 rhombic octahedra for efficient photocatalytic H2 evolution. Advanced Functional Materials, 2025, 35(31): 2418778

[41]

Wu Y , Nguyen P T T , Wong S S , Feng M , Han P , Yao B , He Q , Sum T C , Zhang T , Yan N . Photocatalytic upcycling of polylactic acid to alanine by sulfur vacancy-rich cadmium sulfide. Nature Communications, 2025, 16(1): 846

[42]

Liu Q , Ren J , Xiong Y , Song M , Li Y , Zhang X , Yang L , Xue Q , Tian J . Formation of double-shelled hollow spherical CdS/Ca0.3Zn2.7In2S6 as S-scheme photocatalysts for highly efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2025, 689: 137210

[43]

Zheng X , Yang Y , Song Y , Ma Z , Gao Q , Liu Y , Li J , Wu X , Wang X , Mao W . . Recent advances in photocatalytic hydrogen evolution of AgIn5S8-based photocatalysts. Interdisciplinary Materials, 2023, 2(5): 669–688

[44]

Li W , Zuo G , Ma S , Xi L , Ouyang C , He M , Wang Y , Ji Q , Yang S , Zhu W . . Localized photothermal effect mediated hollow S-scheme NiCo2O4@ZnIn2S4 for enhanced photocatalytic hydrogen evolution. Applied Catalysis B. Environment and Energy, 2025, 365: 124971

[45]

Wang X , Ding H , Luo W , Yu Y , Chen Q , Luo B , Xie M , Guo X . Morphology evolution of CoNi-LDHs synergistically engineered by precipitant and variable cobalt for asymmetric supercapacitor with superior cycling stability. EcoEnergy, 2023, 1(2): 448–459

[46]

Wu Y , Ding H , Yang T , Xia Y , Zheng H , Wei Q , Han J , Peng D , Yue G . Composite NiCo2O4@CeO2 microsphere as cathode catalyst for high-performance lithium-oxygen battery. Advanced Science, 2022, 9(17): 2200523

[47]

Li K , Xiong H , Wang X , Ma Y , Gao T N , Liu Z , Liu Y , Fan M , Zhang L , Song S . . Ligand-assisted coordinative self-assembly method to synthesize mesoporous ZnxCd1–xS nanospheres with nano-twin-induced phase junction for enhanced photocatalytic H2 evolution. Inorganic Chemistry, 2020, 59(7): 5063–5071

[48]

Zhao T , Li J , Liu J , Liu F , Xu K , Yu M , Xu W , Cheng F . Tailoring the catalytic microenvironment of Cu2O with SiO2 to enhance C2+ product selectivity in CO2 electroreduction. ACS Catalysis, 2023, 13(7): 4444–4453

[49]

He B , Bie C , Fei X , Cheng B , Yu J , Ho W , Al-Ghamdi A A , Wageh S . Enhancement in the photocatalytic H2 production activity of CdS NRs by Ag2S and NiS dual cocatalysts. Applied Catalysis B: Environmental, 2021, 288: 119994

[50]

Zhuang C , He C , Wang J , Ullah N , Hu Z , Meng F , Zhang Q , Yi Z , Jing H . Building organic-inorganic heterojunction NiCo2O4/h-BN toward artificial photosynthesis—boron as hole. Applied Catalysis B: Environment and Energy, 2025, 361: 124678

[51]

Gao D , Xu J , Wang L , Zhu B , Yu H , Yu J . Optimizing atomic hydrogen desorption of sulfur-rich NiS1+x cocatalyst for boosting photocatalytic H2 evolution. Advanced Materials, 2022, 34(6): 2108475

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1609KB)

Supplementary files

FCE-25062-OF-XX_suppl_1

212

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/