Local hydrophobicity enhanced hydrogen evolution over NiCo2O4/CdS photocatalyst
Xuan Xiang , Yuyin Mao , Minghui Zhang , Hanxiao Wang , Xiangdong Xue , Jian Tian , Jian Liu
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (11) : 106
Local hydrophobicity enhanced hydrogen evolution over NiCo2O4/CdS photocatalyst
Addressing electron and gas transfer dynamics is pivotal for photocatalytic hydrogen evolution. In this work, a hydrophilic NiCo2O4/CdS heterojunction was incorporated with hydrophobic SiO2 to enhance photocatalytic hydrogen evolution performance. The hydrophilic/hydrophobic NiCo2O4/CdS/SiO2 photocatalyst exhibited a hydrogen production rate of 11.78 mmol·g−1·h−1, outperforming the 8.15 mmol·g−1·h−1 of NiCo2O4/CdS heterojunction. The heterojunction significantly enhances photogenerated charge-carrier separation efficiency, while the hydrophobic SiO2 facilitates gas evolution by mitigating surface bubble aggregation. The work here provides a facile route for developing photocatalysts toward practical hydrogen evolution.
hydrophilicity / hydrophobicity / hydrogen evolution / photocatalytic / gas transfer
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |