Mechanism-tailored two-dimensional metal nanosheets for advanced electrocatalytic CO2 reduction: from structural design to practical application

Zhijian Li , Deqing Kong , Yu Sun , Yifan Shao , Xi Wang

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (11) : 105

PDF (5215KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (11) : 105 DOI: 10.1007/s11705-025-2608-4
REVIEW ARTICLE
REVIEW ARTICLE

Mechanism-tailored two-dimensional metal nanosheets for advanced electrocatalytic CO2 reduction: from structural design to practical application

Author information +
History +
PDF (5215KB)

Abstract

Electrochemical carbon dioxide reduction reaction (CO2RR) represents a pivotal strategy for sustainable carbon cycling and chemical synthesis. This review comprehensively analyzes the burgeoning field of two-dimensional (2D) metal nanosheets (e.g., Bi, Ag, Co, Pd, Cu) as high-performance electrocatalysts for CO2RR. We delve into the fundamental catalytic mechanisms underpinning their activity across both gas-phase (e.g., CO, CH4, C2H4) and liquid-phase (e.g., HCOOH, CH3OH, C2H5OH) product formation pathways, with a particular focus on deciphering critical structure-activity relationships. Key intrinsic properties: composition, exposed crystal facets, and defect engineering, are systematically examined to elucidate their profound influence on catalytic activity, selectivity, and product distribution. Beyond mechanistic insights, the review critically assesses the practical utility of these 2D metal catalysts, highlighting emerging applications, persistent challenges (e.g., scalability, long-term stability, competitive reactions, C2+ selectivity control), and promising future research trajectories. By bridging fundamental catalytic principles with applied materials design, this work provides novel perspectives for advancing efficient and selective CO2RR technologies crucial for achieving carbon neutrality goals.

Graphical abstract

Keywords

two dimensions metal nanosheets / CO2RR / electrocatalysis / carbon neutrality

Cite this article

Download citation ▾
Zhijian Li, Deqing Kong, Yu Sun, Yifan Shao, Xi Wang. Mechanism-tailored two-dimensional metal nanosheets for advanced electrocatalytic CO2 reduction: from structural design to practical application. Front. Chem. Sci. Eng., 2025, 19(11): 105 DOI:10.1007/s11705-025-2608-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu Q , Yao Y , Li J , Wang J , Chen L , Li W , Guo Y , Yao S , Yang Y , Wang X . Stable cobalt-zeolite propane-dehydrogenation catalysts enabled by reaction-driven reconstruction. Angewandte Chemie, 2025, 137(21): e202505628

[2]

Yan Y , Wang J , Lu F , Li W , Mei B , Zhang L , Yan W , Yuan F , Jiang G , Senanayake S D . . Suppressing COx in oxidative dehydrogenation of propane with dual-atom catalysts. Nature Communications, 2025, 16(1): 4639

[3]

Li P , Yao Y , Zhong W , Li W , Zhu Q , Wang X , Jiang J . Redox-driven in situ formation of bimetallic catalysts via Sn2+/Sn4+ interconversion. Angewandte Chemie International Edition, 2025, e202502118

[4]

Gao Y , Sun M , Jing Y , Zhao K , Chen L , Guo Y , Liang Z , Yang Y , Yuan F , Zhu T . . Electrocatalytic C-S cross-coupling via engineered frustrated lewis acid-base pairs for high-efficiency methanesulfonate synthesis. Angewandte Chemie International Edition, 2025, e202509851

[5]

Wang J , Zhao K , Yao Y , Xue F , Lu F , Yan W , Yuan F , Wang X . Ferromagnetic Fe-TiO2 spin catalysts for enhanced ammonia electrosynthesis. Nature Communications, 2025, 16(1): 1129

[6]

Sun M , Chen J , Zhang Z , Jing Y , Zhao M , Chen L , Liu K , Zhang C , Wang X , Yao J . Ferromagnetic ordering outperforms coordination effects in governing oxygen reduction catalysis on high-index nickel single crystals. Angewandte Chemie International Edition, 2025, 64(31): e202504869

[7]

Yao Y , Wang J , Liu Q , Yu C , Gao Z , Yuan F , Wang X . Improving the selectivity and stability of supported cobalt catalysts via static Bi-doping and dynamic trace CO2 Co-feeding during propane dehydrogenation. Angewandte Chemie International Edition, 2025, 137(3): e202415295

[8]

Lu F , Wang J , Cai S , Wang Y , Yao Y , Wang X . Asymmetric coupled binuclear-site catalysts for low-temperature selective acetylene semi-hydrogenation. Angewandte Chemie International Edition, 2025, 64(2): e202414719

[9]

Li Y , Sun K , Fu Y , Wang S , Zhuge C , Yin X , Yang Z , Li Z , Liu D , Wang X . . “Bowling collision effect” of CoMo6 polyoxometalate units enables wide temperature range from –20 to 60 °C and dendrite mitigation Li-S batteries. Advanced Materials, 2024, 36(38): 2406343

[10]

Gao Y , Wang J , Sun M , Jing Y , Chen L , Liang Z , Yang Y , Zhang C , Yao J , Wang X . Tandem catalysts enabling efficient C-N coupling toward the electrosynthesis of urea. Angewandte Chemie International Edition, 2024, 136(23): e202402215

[11]

Liu Y , Tang H , Zhou Y , Lin B . Improved catalytic performance of CO2 electrochemical reduction reaction towards ethanol on chlorine-modified Cu-based electrocatalyst. Nano Research, 2024, 17(5): 3761–3768

[12]

Yang Y , Zhang W , Wu G , Huang Q , Wen J , Wang D , Liu M . Electronic structure tuning in Cu-Co dual single atom catalysts for enhanced COOH* spillover and electrocalytic CO2 reduction activity. Angewandte Chemie International Edition, 2025, 64(23): e202504423

[13]

Ding R , Ma M , Chen Y , Wang X , Li J , Wang G , Liu J . Inspecting design rules of metal-nitrogen-carbon catalysts for electrochemical CO2 reduction reaction: from a data science perspective. Nano Research, 2023, 16(1): 264–280

[14]

Xie H , Wang T , Liang J , Li Q , Sun S . Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today, 2018, 21: 41–54

[15]

Rehman A , Ma H , Chishti M Z , Ozturk I , Irfan M , Ahmad M . Asymmetric investigation to track the effect of urbanization, energy utilization, fossil fuel energy, and CO2 emission on economic efficiency in China: another outlook. Environmental Science and Pollution Research International, 2021, 28(14): 17319–17330

[16]

Sario M D , Katsouyanni K , Michelozzi P . Climate change, extreme weather events, air pollution, and respiratory health in Europe. European Respiratory Journal, 2013, 42(3): 826–843

[17]

Patz J A , Frumkin H , Holloway T , Vimont D J , Haines A . Climate change: challenges and opportunities for global health. Journal of the American Medical Association, 2014, 312(15): 1565–1580

[18]

Kim K H , Kabir E , Jahan S A . A review of the consequences of global climate change on human health. Journal of Environmental Science and Health Part C: Environmental Carcinogenesis & Ecotoxicology Reviews, 2014, 32(3): 299–318

[19]

Zeng N , Jiang K , Han P , Hausfather Z , Cao J , Kirk-Davidoff D , Ali S , Zhou S . The Chinese carbon-neutral goal: challenges and prospects. Advances in Atmospheric Sciences, 2022, 39(8): 1229–1238

[20]

Siksnelyte-Butkiene I , Streimikiene D , Balezentis T . Addressing sustainability issues in transition to carbon-neutral sustainable society with multi-criteria analysis. Energy, 2022, 254: 124218

[21]

Gu J , Hsu C S , Bai L C , Chen H M , Hu X L . Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science, 2019, 364(6445): 1091–1094

[22]

Chang X , Wang T , Gong J . CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy & Environmental Science, 2016, 9(7): 2177–2196

[23]

Hao C , Wang S , Li M , Kang L , Ma X . Hydrogenation of CO2 to formic acid on supported ruthenium catalysts. Catalysis Today, 2011, 160(1): 184–190

[24]

Fan W , Zhang Q , Wang Y . Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Physical Chemistry Chemical Physics, 2013, 15(8): 2632–2649

[25]

Handoko A D , Wei F , Jenndy B S , Yeo Z W . Jenndy, Yeo B S, Seh Z W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nature Catalysis, 2018, 1(12): 922–934

[26]

Wang G , Chen J , Ding Y , Cai P , Yi L , Li Y , Tu C , Hou Y , Wen Z , Dai L . Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chemical Society Reviews, 2021, 50(8): 4993–5061

[27]

Cao C , Ma D D , Jia J C , Xu Q , Wu X T , Zhu Q L . Divergent paths, same goal: a pair-electrosynthesis tactic for cost-efficient and exclusive formate production by metal-organic-framework-derived 2D electrocatalysts. Advanced Materials, 2021, 33(25): 2008631

[28]

Jiang N , Zhu Z , Xue W , Xia B , You B . Emerging electrocatalysts for water oxidation under near-neutral CO2 reduction conditions. Advanced Materials, 2022, 34(2): 2105852

[29]

Vieira L H , Rasteiro L F , Santana C S , Catuzo G L , Silva A H M D , Assaf J M , Assaf E M . Noble metals in recent developments of heterogeneous catalysts for CO2 conversion processes. ChemCatChem, 2023, 15(14): e202300493

[30]

Yang Y , Wu M , Zhu X , Xu H , Ma S , Zhi Y , Xia H , Liu X , Pan J , Tang J Y . . 2020 Roadmap on two-dimensional nanomaterials for environmental catalysis. Chinese Chemical Letters, 2019, 30(12): 2065–2088

[31]

Yang F , Song P , Ruan M , Xu W . Recent progress in two-dimensional nanomaterials: synthesis, engineering, and applications. FlatChem, 2019, 18: 100133

[32]

Akinwande D J , Brennan C J , Bunch J S , Egberts P , Felts J R , Gao H , Huang R , Kim J S , Li T , Li Y . . A review on mechanics and mechanical properties of 2D materials-graphene and beyond. Extreme Mechanics Letters, 2017, 13: 42–77

[33]

Cao S , Low J , Yu J , Jaroniec M . Polymeric photocatalysts based on graphitic carbon nitride. Advanced Materials, 2015, 27(13): 2150–2176

[34]

Roy S , Zhang X , Puthirath A B , Meiyazhagan A , Bhattacharyya S , Rahman M M , Babu G , Susarla S , Saju S K , Tran M K . . Structure, properties, and applications of two-dimensional hexagonal boron nitride. Advanced Materials, 2021, 33(44): 2101589

[35]

Manzeli S , Ovchinnikov D , Pasquier D , Yazyev O V , Kis A . 2D transition metal dichalcogenides. National Review, 2017, 2(8): 1–15

[36]

Kumar P , Singh S , Hashmi S A R , Kim K . MXenes: emerging 2D materials for hydrogen storage. Nano Energy, 2021, 85: 105989

[37]

Dhakshinamoorthy A , Asiri A M , Garcia H . 2D metal-organic frameworks as multifunctional materials in heterogeneous catalysis and electro/photocatalysis. Advanced Materials, 2019, 31(41): 1900617

[38]

Guan M , Wang Q , Zhang X , Bao J , Gong X , Liu Y . Two-dimensional transition metal oxide and hydroxide-based hierarchical architectures for advanced supercapacitor materials. Frontiers in Chemistry, 2020, 8: 390

[39]

Kalantar-zadeh K , Ou J Z , Daeneke T , Mitchell A , Sasaki T , Fuhrer M S . Two dimensional and layered transition metal oxides. Applied Materials Today, 2016, 5: 73–89

[40]

Chen Y , Fan Z , Zhang Z , Niu W , Li C , Yang N , Chen B , Zhang H . Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chemical Reviews, 2018, 118(13): 6409–6455

[41]

He Q , Sheng B , Zhu K , Zhou Y , Qiao S , Wang Z , Song L . Phase engineering and synchrotron-based study on two-dimensional energy nanomaterials. Chemical Reviews, 2023, 123(17): 10750–10807

[42]

Shifa T A , Wang F , Liu Y , He J . Heterostructures based on 2D materials: a versatile platform for efficient catalysis. Advanced Materials, 2019, 31(45): 1804828

[43]

Tang T , Wang Z , Guan J . A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction. Chinese Journal of Catalysis, 2022, 43(3): 636–678

[44]

Weng C C , Lv X W , Ren J T , Ma T Y , Yuan Z Y . Engineering gas-solid-liquid triple-phase interfaces for electrochemical energy conversion reactions. Electrochemical Energy Reviews, 2022, 5(S1): 19

[45]

Shi T , Liu D , Feng H , Zhang Y , Li Q . Evolution of triple-phase interface for enhanced electrochemical CO2 reduction. Chemical Engineering Journal, 2022, 431: 134348

[46]

Lai W , Ma Z , Zhang J , Yuan Y , Qiao Y , Huang H . Dynamic evolution of active sites in electrocatalytic CO2 reduction reaction: fundamental understanding and recent progress. Advanced Functional Materials, 2022, 32(16): 2111193

[47]

Lu Q , Jiao F . Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering. Nano Energy, 2016, 29: 439–456

[48]

Kumar A , Hsu L H H , Kavanagh P , Barriere F , Lens P N L , Lapinsonniere L , Lienhard V J H , Schroder U , Jiang X C , Leech D . The ins and outs of microorganism-electrode electron transfer reactions. Nature Reviews Chemistry, 2017, 1(3): 0024

[49]

Costentin C . Electrochemical approach to the mechanistic study of proton-coupled electron transfer. Chemical Reviews, 2008, 108(7): 2145–2179

[50]

Kou Z , Li X , Wang T , Ma Y , Zang W , Nie G , Wang J . Fundamentals, on-going advances and challenges of electrochemical carbon dioxide reduction. Electrochemical Energy Reviews, 2022, 5(1): 82–111

[51]

Lei Z , Xue Y , Chen W , Qiu W , Zhang Y , Horike S , Tang L . MOFs-based heterogeneous catalysts: new opportunities for energy-related CO2 conversion. Advanced Energy Materials, 2018, 8(32): 1801587

[52]

Pan F , Yang Y . Designing CO2 reduction electrode materials by morphology and interface engineering. Energy & Environmental Science, 2020, 13(8): 2275–2309

[53]

Wang G , Ma Y , Wang J , Lu P , Wang Y , Fan Z . Metal functionalization of two-dimensional nanomaterials for electrochemical carbon dioxide reduction. Nanoscale, 2023, 15(14): 6456–6475

[54]

Ahmad T , Liu S , Sajid M , Chen W . Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: a review. Nano Research Energy, 2022, 1(2): e9120021

[55]

Yang H , Huang J , Yang H , Guo Q , Jiang B , Chen J , Yuan X . Design and synthesis of Ag-based catalysts for electrochemical CO2 reduction: advances and perspectives. Chemistry: an Asian Journal, 2022, 17(18): e202200637

[56]

Zhou Y , Han N , Li Y . Recent progress on Pd-based nanomaterials for electrochemical CO2 reduction. Acta Physico-Chimica Sinica, 2020, 36(9): 2001041

[57]

Chen Q , Tsiakaras P , Shen P . Electrochemical reduction of carbon dioxide: recent advances on Au-based nanocatalysts. Catalysts, 2022, 12(11): 1348

[58]

Choi W , Won D H , Hwang Y J . Catalyst design strategies for stable electrochemical CO2 reduction reaction. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(31): 15341–15357

[59]

Jin S , Hao Z , Zhang K , Yan Z , Chen J . Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization. Angewandte Chemie, 2021, 133(38): 20795–20816

[60]

Cheng T , Xiao H , Goddard W A III . Reaction mechanisms for the electrochemical reduction of CO2 to CO and formate on the Cu (100) surface at 298 K from quantum mechanics free energy calculations with explicit water. Journal of the American Chemical Society, 2016, 138(42): 13802–13805

[61]

Zhang X G , Jin X , Wu D Y , Tian Z Q . Selective electrocatalytic mechanism of CO2 reduction reaction to CO on silver electrodes: a unique reaction intermediate. Journal of Physical Chemistry C, 2018, 122(44): 25447–25455

[62]

Tang T , Wang Z , Guan J . Optimizing the electrocatalytic selectivity of carbon dioxide reduction reaction by regulating the electronic structure of single-atom M-N-C materials. Advanced Functional Materials, 2022, 32(19): 2111504

[63]

Li H , Wei J , Zhu X , Gan L , Cheng T , Li J . Stimulating the pre-catalyst redox reaction and the proton-electron transfer process of cobalt phthalocyanine for CO2 electroreduction. Journal of Physical Chemistry C, 2022, 126(23): 9665–9672

[64]

Zhang W , Jia B , Liu X , Ma T . Surface and interface chemistry in metal-free electrocatalysts for electrochemical CO2 reduction. SmartMat, 2022, 3(1): 5–34

[65]

Zhao S T , Zhang W , Zhang X L , Lin C B , Chen W X , Zhuang G L . Exploring spin dynamics in diatomic Co2 catalysts on graphyne for enhanced Co electroreduction. Advanced Theory and Simulations, 2024, 7(5): 2301016

[66]

Alfonso D R , Kauffman D R . Assessment of trends in the electrochemical CO2 reduction and H2 evolution reactions on metal nanoparticles. MRS Communications, 2017, 7(3): 601–606

[67]

Guo L , Guo S . Synergistic interaction of FeCo anchored on phthalocyanine for efficient CO2 electroreduction to C2 via microkinetic study. International Journal of Hydrogen Energy, 2024, 51: 1532–1544

[68]

Yan T , Wang P , Sun W Y . Single-site metal-organic framework and copper foil tandem catalyst for highly selective CO2 electroreduction to C2H4. Small, 2023, 19(10): 2206070

[69]

Calle V F , Koper M T M . Theoretical considerations on the electroreduction of CO to C2 species on Cu (100) electrodes. Angewandte Chemie International Edition, 2013, 52(28): 7282–7285

[70]

Guan Y , Liu M , Rao X , Liu Y , Zhang J . Electrochemical reduction of carbon dioxide (CO2): bismuth-based electrocatalysts. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(24): 13770–13803

[71]

Zhang Y , Li F , Dong J , Jia K , Sun T , Xu L . Recent advances in designing efficient electrocatalysts for electrochemical carbon dioxide reduction to formic acid/formate. Journal of Electroanalytical Chemistry, 2023, 928: 117018

[72]

Zhi X , Vasileff A , Zheng Y , Jiao Y , Qiao S Z . Role of oxygen-bound reaction intermediates in selective electrochemical CO2 reduction. Energy & Environmental Science, 2021, 14(7): 3912–3930

[73]

Cheng F , Zhang X , Mu K , Ma X , Jiao M , Wang Z , Limpachanangkul P , Chalermsinsuwan B , Gao Y , Li Y . . Recent progress of Sn-based derivative catalysts for electrochemical reduction of CO2. Energy Technology, 2021, 9(1): 2000799

[74]

Gao D , Zhou H , Cai F , Wang J , Wang G , Bao X . Pd-containing nanostructures for electrochemical CO2 reduction reaction. ACS Catalysis, 2018, 8(2): 1510–1519

[75]

Wang J Y , Zhang H X , Jiang K , Cai W B . From HCOOH to CO at Pd electrodes: a surface-enhanced infrared spectroscopy study. Journal of the American Chemical Society, 2011, 133(38): 14876–14879

[76]

Hua Y , Zhu C , Zhang L , Dong F . Designing surface and interface structures of copper-based catalysts for enhanced electrochemical reduction of CO2 to alcohols. Materials, 2024, 17(3): 600

[77]

Fors S A , Malapit C A . Homogeneous catalysis for the conversion of CO2, CO, CH3OH, and CH4 to C2+ chemicals via C–C bond formation. ACS Catalysis, 2023, 13(7): 4231–4249

[78]

Santatiwongchai J , Faungnawakij K , Hirunsit P . Comprehensive mechanism of CO2 electroreduction toward ethylene and ethanol: the solvent effect from explicit water-Cu (100) interface models. ACS Catalysis, 2021, 11(15): 9688–9701

[79]

Kim Y , Park S , Shin S J , Choi W , Min B K , Kim H , Kim W , Hwang Y J . Time-resolved observation of C–C coupling intermediates on Cu electrodes for selective electrochemical CO2 reduction. Energy & Environmental Science, 2020, 13(11): 4301–4311

[80]

Wang C , Lv Z , Feng X , Yang W , Wang B . Recent advances in electrochemical CO2-to-multicarbon conversion: from fundamentals to industrialization. Advanced Energy Materials, 2023, 13(47): 2302382

[81]

Liu W , Bai P , Wei S , Kong X , Yang C , Xu L . Electron-rich Cu0-Cu2O heterogeneous interface constructed via controllable electrochemical reconstruction for a single CO2 deep-reduction product ethylene. Applied Catalysis B: Environment and Energy, 2024, 348: 123831

[82]

Xu K , Zhang Q , Zhou X , Zhu M , Chen H . Recent progress and perspectives on photocathode materials for CO2 catalytic reduction. Nanomaterials, 2023, 13(10): 1683

[83]

Mahyoub S A , Qaraah F A , Yan S , Hezam A , Zhong J , Cheng Z . Rational design of low loading Pd-alloyed Ag nanocorals for high current density CO2-to-CO electroreduction at elevated pressure. Materials Today Energy, 2022, 24: 100923

[84]

Li Y , Adli N M , Shan W , Wang M , Zachman M J , Hwang S , Tabassum H , Karakalos S , Feng Z , Wang G . . Atomically dispersed single Ni site catalysts for high-efficiency CO2 electroreduction at industrial-level current densities. Energy & Environmental Science, 2022, 15(5): 2108–2119

[85]

Usman M , Humayun M , Garba M D , Ullah L , Zeb Z , Helal A , Suliman M H , Alfaifi B Y , Iqbal N , Abdinejad M . . Electrochemical reduction of CO2: a review of cobalt based catalysts for carbon dioxide conversion to fuels. Nanomaterials, 2021, 11(8): 2029

[86]

Wang G , Wang F , Deng P , Li J , Wang C , Hua Y , Shen Y , Tian X . Electronic modulation of two-dimensional bismuth-based nanosheets for electrocatalytic CO2 reduction to formate: a review. Materials Reports: Energy, 2023, 3(1): 100181

[87]

Avila-Bolivar B , Garcia-Cruz L , Vicente M , Solla-Gullon J . Electrochemical reduction of CO2 to formate on easily prepared carbon-supported Bi nanoparticles. Molecules, 2019, 24(11): 2032

[88]

Kim S , Dong W J , Gim S , Sohn W , Park J Y , Yoo C J , Jang H W , Lee J L . Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate. Nano Energy, 2017, 39: 44–52

[89]

Wang D , Liu C , Zhang Y , Wang Y , Wang Z , Ding D , Cui Y , Zhu X , Pan C , Lou Y . . CO2 electroreduction to formate at a partial current density up to 590 mA·mg–1 via micrometer-scale lateral structuring of bismuth nanosheets. Small, 2021, 17(29): 2100602

[90]

Zhang W , Hu Y , Ma L , Zhu G , Zhao P , Xue X , Chen R , Yang S , Ma J , Liu J . . Liquid-phase exfoliated ultrathin Bi nanosheets: uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure. Nano Energy, 2018, 53: 808–816

[91]

Liu P , Liu H , Zhang S , Wang J , Wang C . A general strategy for obtaining BiOX nanoplates derived Bi nanosheets as efficient CO2 reduction catalysts by enhancing CO2 adsorption and electron transfer. Journal of Colloid and Interface Science, 2021, 602: 740–747

[92]

Han N , Wang Y , Yang H , Deng J , Wu J , Li Y , Li Y . Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nature Communications, 2018, 9(1): 1320

[93]

Su P , Xu W , Qiu Y , Zhang T , Li X , Zhang H . Ultrathin bismuth nanosheets as a highly efficient CO2 reduction electrocatalyst. ChemSusChem, 2018, 11(5): 848–853

[94]

Yi L , Chen J , Shao P , Huang J , Peng X , Li J , Wang G , Zhang C , Wen Z . Molten-salt-assisted synthesis of bismuth nanosheets for long-term continuous electrocatalytic conversion of CO2 to formate. Angewandte Chemie International Edition, 2020, 59(45): 20112–20119

[95]

Peng C J , Zeng G , Ma D D , Cao C , Zhou S , Wu X T , Zhu Q L . Hydrangea-like superstructured micro/nanoreactor of topotactically converted ultrathin bismuth nanosheets for highly active CO2 electroreduction to formate. ACS Applied Materials & Interfaces, 2021, 13(17): 20589–20597

[96]

Xu K , Wang L , Xu X , Dou S , Hao W , Du Y . Two dimensional bismuth-based layered materials for energy-related applications. Energy Storage Materials, 2019, 19: 446–463

[97]

Ruiz-Ruiz V F , Zumeta-Dubé I , Díaz D , Arellano-Jiménez M J , José-Yacamán M . Can silver be alloyed with bismuth on nanoscale? An optical and structural approach. Journal of Physical Chemistry C, 2017, 121(1): 940–949

[98]

Yang K , Lv X , Meng J , Wang H , Guo L , Li X , Su F , Lan Q , Li Z , Wang W . . Bi4O5Br2 co-modified with oxygen vacancy and Bi metal for efficient photothermal conversion of CO2 to C2 hydrocarbons. Vacuum, 2024, 227: 113458

[99]

Ide E , Angata S , Hirose A , Kobayashi K F . Metal-metal bonding process using Ag metallo-organic nanoparticles. Acta Materialia, 2005, 53(8): 2385–2393

[100]

Mahyoub S A , Qaraah F A , Chen C , Zhang F , Yan S , Cheng Z . An overview on the recent developments of Ag-based electrodes in the electrochemical reduction of CO2 to CO. Sustainable Energy & Fuels, 2020, 4(1): 50–67

[101]

Wang Y , Liu J , Wang Y , Al-Enizi A M , Zheng G . Tuning of CO2 reduction selectivity on metal electrocatalysts. Small, 2017, 13(43): 1701809

[102]

Nagahiro H , Kato M , Hori Y . Electrochemical reduction of CO2 on single crystal electrodes of silver Ag (111), Ag (100), and Ag (110). Journal of Electroanalytical Chemistry, 1997, 440(1): 283–286

[103]

Rosen J , Hutchings G S , Lu Q , Rivera S , Zhou Y , Vlachos D G , Jiao F . Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces. ACS Catalysis, 2015, 5(7): 4293–4299

[104]

Yan S , Mahyoub S A , Zhong J , Chen C , Zhang F , Cheng Z . Ultrathin and dense Ag nanosheets synthesis under suppressed face (111) growth and surface diffusion. Journal of Power Sources, 2021, 488: 229484

[105]

Liu S , Tao H , Zeng L , Qi L , Xu Z , Liu Q , Luo J L . Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. Journal of the American Chemical Society, 2017, 139(6): 2160–2163

[106]

Tao H , Gao Y , Talreja N , Guo F , Texter J , Yan C , Sun Z . Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(16): 7257–7284

[107]

Xiong B , Yang Y , Liu J , Ding J , Yang Y . Crystal orientation effects on the electrochemical conversion of CO2 to syngas over Cu-M (M = Ag, Ni, Zn, Cd, and Pd) bimetal catalysts. Applied Surface Science, 2021, 567: 150839

[108]

Lee C Y , Zhao Y , Wang C , Mitchell D R G , Wallace G G . Rapid formation of self-organised Ag nanosheets with high efficiency and selectivity in CO2 electroreduction to CO. Sustainable Energy & Fuels, 2017, 1(5): 1023–1027

[109]

Lu Q , Rosen J , Zhou Y , Hutchings G S , Kimmel Y C , Chen J G , Jiao F . A selective and efficient electrocatalyst for carbon dioxide reduction. Nature Communications, 2014, 5(1): 3242

[110]

Li S , Dong X , Mao J , Chen W , Chen A , Wu G , Zhu C , Li G , Wei Y , Liu X . . Highly efficient CO2 reduction at steady 2 A·cm–2 by surface reconstruction of silver penetration electrode. Small, 2023, 19(35): 2301338

[111]

Chen G , Ge L , Kuang Y , Rabiee H , Ma B , Dorosti F , Nanjudan A K , Zhu Z , Wang H . In situ growth of hierarchical silver sub-nanosheets on zinc nanosheets-based hollow fiber gas-diffusion electrodes for electrochemical CO2 reduction to CO. Small Science, 2024, 4(10): 2400184

[112]

Chen L X , Chen Z W , Jiang M , Lu Z , Gao C , Cai G , Singh C V . Insights on the dual role of two-dimensional materials as catalysts and supports for energy and environmental catalysis. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(4): 2018–2042

[113]

Fiorillo F , Bertotti G , Pasquale A M . Soft Magnetic Materials. Hoboken: John Wiley & Sons, 2016, 1–42

[114]

Guo L , Zhou J , Liu F , Meng X , Ma Y , Hao F , Xiong Y , Fan Z . Electronic structure design of transition metal-based catalysts for electrochemical carbon dioxide reduction. ACS Nano, 2024, 18(14): 9823–9851

[115]

Chen Z , Zhang G , Du L , Zheng Y , Sun L , Sun S . Nanostructured cobalt-based electrocatalysts for CO2 reduction: recent progress, challenges, and perspectives. Small, 2020, 16(52): 2004158

[116]

Gao S , Lin Y , Jiao X , Sun Y , Luo Q , Zhang W , Li D , Yang J , Xie Y . Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature, 2016, 529(7584): 68–71

[117]

Yin J , Yin Z , Jin J , Sun M , Huang B , Lin H , Ma Z , Muzzio M , Shen M , Yu C . . A new hexagonal cobalt nanosheet catalyst for selective CO2 conversion to ethanal. Journal of the American Chemical Society, 2021, 143(37): 15335–15343

[118]

Jiang T W , Jiang K , Cai W B . Electrochemical CO2 reduction on Pd-based electrodes: from mechanism understanding to rational catalyst design. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2024, 12(33): 21515–21530

[119]

Sun S Q , Mao Y L , Liu F , Zhang S K , Sun Y D , Gao Q , Liu X J . Recent advances in nanoscale engineering of Pd-based electrocatalysts for selective CO2 electroreduction to formic acid/formate. Energy Materials, 2024, 4(3): 400027

[120]

Zhou F , Zhang J , Zhang Y , Wu Y , Wang Y , Luo W . Palladium-copper bimetallic catalysts for electroreduction of CO2 and nitrogenous species. Coordination Chemistry Reviews, 2024, 509: 215802

[121]

Jiang M , Wang H , Zhu M , Luo X , He Y , Wang M , Wu C , Zhang L , Li X , Liao X . . Review on strategies for improving the added value and expanding the scope of CO2 electroreduction products. Chemical Society Reviews, 2024, 53(10): 5149–5189

[122]

Shahzad U , Saeed M , Rabbee M F , Marwani H M , Al-Humaidi J Y , Altal M , Althomali R H , Baek K H , Awual M R , Rahman M M . Recent progress in two-dimensional metallenes and their potential application as electrocatalyst. Journal of Energy Chemistry, 2024, 94: 577–598

[123]

Wei Z , Shen Y , Wang X , Song Y , Guo J . Recent advances of doping strategy for boosting the electrocatalytic performance of two-dimensional noble metal nanosheets. Nanotechnology, 2024, 35(40): 402003

[124]

Zhao Y , Tan X , Yang W , Jia C , Chen X , Ren W , Smith S C , Zhao C . Surface reconstruction of ultrathin palladium nanosheets during electrocatalytic CO2 reduction. Angewandte Chemie International Edition, 2020, 59(48): 21493–21498

[125]

Gao N , Wang F , Ding J , Sendeku M G , Yu P , Zhan X , Cai S , Xiao C , Yang R , He J . . Intercalated gold nanoparticle in 2D palladium nanosheet avoiding CO poisoning for formate production under a wide potential window. ACS Applied Materials & Interfaces, 2022, 14(8): 10344–10352

[126]

Zou Y , Wang S . An investigation of active sites for electrochemical CO2 reduction reactions: from in situ characterization to rational design. Advanced Science, 2021, 8(9): 2003579

[127]

Ojelade O A , Zaman S F . A review on Pd based catalysts for CO2 hydrogenation to methanol: in-depth activity and DRIFTS mechanistic study. Catalysis Surveys from Asia, 2020, 24(1): 11–37

[128]

Ma Y , Li B , Yang S . Ultrathin two-dimensional metallic nanomaterials. Materials Chemistry Frontiers, 2018, 2(3): 456–467

[129]

Yang Y , Ohnoutek L , Ajmal S , Zheng X , Feng Y , Li K , Wang T , Deng Y , Liu Y , Xu D . . “Hot edges” in an inverse opal structure enable efficient CO2 electrochemical reduction and sensitive in situ Raman characterization. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(19): 11836–11846

[130]

Hori Y , Takahashi I , Koga O , Hoshi N . Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. Journal of Molecular Catalysis A Chemical, 2003, 199(1): 39–47

[131]

Woldu A R , Huang Z , Zhao P , Hu L , Astruc D . Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coordination Chemistry Reviews, 2022, 454: 214340

[132]

Tomboc G M , Choi S , Kwon T , Hwang Y J , Lee K . Potential link between Cu surface and selective CO2 electroreduction: perspective on future electrocatalyst designs. Advanced Materials, 2020, 32(17): 1908398

[133]

Zhong D , Zhao Z J , Zhao Q , Cheng D , Liu B , Zhang G , Deng W , Dong H , Zhang L , Li J . . Coupling of Cu (100) and (110) facets promotes carbon dioxide conversion to hydrocarbons and alcohols. Angewandte Chemie International Edition, 2021, 60(9): 4879–4885

[134]

Grosse P , Gao D F , Scholten F , Sinev I , Mistry H , Roldan Cuenya B . Dynamic changes in the structure, chemical state, and catalytic selectivity of Cu nanocubes during CO2 electroreduction: size and support effects. Angewandte Chemie International Edition, 2018, 57(21): 6192–6197

[135]

Wu Z Z , Zhang X L , Niu Z Z , Gao F Y , Yang P P , Chi L Q , Shi L , Wei W S , Liu R , Chen Z . . Identification of Cu (100)/Cu (111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. Journal of the American Chemical Society, 2022, 144(1): 259–269

[136]

Dai L , Qin Q , Wang P , Zhao X , Hu C , Liu P , Qin R , Chen M , Ou D , Xu C . . Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide. Science Advances, 2017, 3(9): e1701069

[137]

Pan J , Sun Y , Deng P , Yang F , Chen S , Zhou Q , Park H S , Liu H , Xia B Y . Hierarchical and ultrathin copper nanosheets synthesized via galvanic replacement for selective electrocatalytic carbon dioxide conversion to carbon monoxide. Applied Catalysis B: Environmental, 2019, 255: 117736

[138]

Zhang B , Zhang J , Hua M , Wan Q , Su Z , Tan X , Liu L , Zhang F , Chen G , Tan D . . Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets. Journal of the American Chemical Society, 2020, 142(31): 13606–13613

[139]

Wang H , Zhan G , Tang C , Yang Y , Liu W , Wang D , Wu Y , Wang H , Liu K , Li J . . Scalable edge-oriented metallic two-dimensional layered Cu2Te arrays for electrocatalytic CO2 methanation. ACS Nano, 2023, 17(5): 4790–4799

[140]

Shi Y , Liang Z . Machine learning accelerates the screening of single-atom catalysts towards CO2 electroreduction. Applied Catalysis A: General, 2024, 676: 119674

[141]

Dasgupta A , Gao Y , Broderick S R , Pitman E B , Rajan K . Machine learning-aided identification of single atom alloy catalysts. Journal of Physical Chemistry C, 2020, 124(26): 14158–14166

[142]

Han Z K , Sarker D , Ouyang R , Mazheika A , Gao Y , Levchenko S V . Single-atom alloy catalysts designed by first-principles calculations and artificial intelligence. Nature Communications, 2021, 12(1): 1833

[143]

Saxena S , Khan T S , Jalid F , Ramteke M , Haider M A . In silico high throughput screening of bimetallic and single atom alloys using machine learning and ab initio microkinetic modelling. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(1): 107–123

[144]

Liu T , Song G , Liu X , Chen Z , Shen Y , Wang Q , Peng Z , Wang G . Insights into the mechanism in electrochemical CO2 reduction over single-atom copper alloy catalysts: a DFT study. iScience, 2023, 26(10): 107953

[145]

Xia W , Xie Y , Jia S , Han S , Qi R , Chen T , Xing X , Yao T , Zhou D , Dong X . . Adjacent copper single atoms promote C–C coupling in electrochemical CO2 reduction for the efficient conversion of ethanol. Journal of the American Chemical Society, 2023, 145(31): 17253–17264

[146]

Tan X , Yu C , Ren Y , Cui S , Li W , Qiu J . Recent advance in innovative strategies for CO2 electroreduction reaction. Energy & Environmental Science, 2021, 14(2): 765–780

[147]

Rhimi B , Zhou M , Yan Z , Cai X , Jiang Z . Cu-based materials for enhanced C2+ product selectivity in photo-/electro-catalytic CO2 reduction: challenges and prospects. Nano-Micro Letters, 2024, 16(1): 64

[148]

Popovic S , Smiljanic M , Jovanovic P , Vavra J , Buonsanti R , Hodnik N . Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction. Angewandte Chemie International Edition, 2020, 59(35): 14736–14746

[149]

Dunwell M , Luc W , Yan Y , Jiao F , Xu B . Understanding surface-mediated electrochemical reactions: CO2 reduction and beyond. ACS Catalysis, 2018, 8(9): 8121–8129

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (5215KB)

258

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/