Research progress on crystal structure regulation strategies for two-electron oxygen reduction of transition metal compounds

Hang Feng , Shiyu Yu , Chengxu Zhang , Jue Hu

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (11) : 102

PDF (3257KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (11) : 102 DOI: 10.1007/s11705-025-2605-7
REVIEW ARTICLE
REVIEW ARTICLE

Research progress on crystal structure regulation strategies for two-electron oxygen reduction of transition metal compounds

Author information +
History +
PDF (3257KB)

Abstract

Currently, the electrocatalytic two-electron oxygen reduction reaction for the production of H2O2 presents a promising alternative to the energy-intensive anthraquinone process. Enhancing the selectivity and activity of the catalyst is crucial for achieving efficient electrosynthesis of H2O2. Transition metal compound catalysts are considered ideal electrocatalysts due to their advantages, including simple preparation, low cost, diverse crystal structures, abundant availability, environmental friendliness, and the synergistic effects between coupled metals. This paper systematically reviews the latest research advancements regarding transition metal compounds used in oxygen reduction reactions to generate H2O2. It begins by elaborating on the fundamental concepts related to oxygen reduction reactions and subsequently discusses various methods for regulating transition metal compound catalysts, including element doping, defect generation, heterogeneous structure construction, crystal design, and polycrystalline transformation. The activities, selectivity, and stability of different transition metal compounds in the electrocatalytic synthesis of H2O2 are summarized, and the future development directions for transition metal compound catalysts are explored, providing valuable insights for the large-scale and efficient electrosynthesis of H2O2 in the future.

Graphical abstract

Keywords

2e ORR / H2O2 / regulation strategies / transition metal compounds

Cite this article

Download citation ▾
Hang Feng, Shiyu Yu, Chengxu Zhang, Jue Hu. Research progress on crystal structure regulation strategies for two-electron oxygen reduction of transition metal compounds. Front. Chem. Sci. Eng., 2025, 19(11): 102 DOI:10.1007/s11705-025-2605-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Qu S Y , Wu H , Ng Y H . Clean production of hydrogen peroxide: a heterogeneous solar-driven redox process. Advanced Energy Materials, 2023, 13(36): 2301047

[2]

Li Y , Zhao Y , Wu J , Han Y , Huang H , Liu Y , Kang Z . Photo-charge regulation of metal-free photocatalyst by carbon dots for efficient and stable hydrogen peroxide production. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(45): 25453–25462

[3]

Shao H , Zhang C , Jiang H , Guan J , Guan W , Shi Q , Hu J . “B” site-modulated perovskite oxide materials for efficient electrochemical water oxidation to hydrogen peroxide. Applied Catalysis A: General, 2024, 670: 119558

[4]

Shao H , Zhang Y , Zhao J , Zhang C , Bai F , Hu J . Stable production of hydrogen peroxide over zinc oxide@zeolitic imidazolate Framework-8 composite catalysts. Journal of Colloid and Interface Science, 2024, 676: 139–148

[5]

Wang Y , Zhang J . Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water splitting. Frontiers of Chemical Science and Engineering, 2018, 12(4): 838–854

[6]

Deng L , Yang Z , Chen B , Zhu Y , Xia Y , Li R , Jia Q . Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient multifunctional electrocatalysts. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1487–1499

[7]

Liang H , Wang L , Liu G . A review of recent development on catalysts for direct synthesis of hydrogen peroxide from hydrogen and oxygen. Chemical Industry and Engineering Progress, 2021, 40(4): 2060–2069

[8]

He C , Xia C , Li F M , Zhang J , Guo W , Xia B Y . Rational design of oxygen species adsorption on nonnoble metal catalysts for two-electron oxygen reduction. Advanced Energy Materials, 2024, 14(1): 2303233

[9]

Fernandes C M , Santos A O , Antonin V S , Moura J P C , Trench A B , Alves O C , Xing Y , Silva J C M , Santos M C . Magnetic field-enhanced oxygen reduction reaction for electrochemical hydrogen peroxide production with different cerium oxide nanostructures. Chemical Engineering Journal, 2024, 488: 150947

[10]

Liu K , Li F , Zhan H , Zhan S . Recent progress in two-dimensional materials for generation of hydrogen peroxide by two-electron oxygen reduction reaction. Materials Today Energy, 2024, 40: 101500

[11]

Zhang Y , Zhang C , Mei Y , Le T , Shao H , Jiang H , Feng Y , Hu J . NiFe layered double hydroxide as an efficient bifunctional catalyst for electrosynthesis of hydrogen peroxide and oxygen. International Journal of Hydrogen Energy, 2022, 47(87): 36831–36842

[12]

Wu Z , Iqbal Z , Wang X . Metal-free, carbon-based catalysts for oxygen reduction reactions. Frontiers of Chemical Science and Engineering, 2015, 9(3): 280–294

[13]

Wang H Y , Weng C C , Ren J T , Yuan J Y . An overview and recent advances in electrocatalysts for direct seawater splitting. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1408–1426

[14]

Lee Y H , Li F , Chang K H , Hu C C , Ohsaka T . Novel synthesis of N-doped porous carbons from collagen for electrocatalytic production of H2O2. Applied Catalysis B: Environmental, 2012, 126: 208–214

[15]

Sun Y , Li S , Jovanov Z P , Bernsmeier D , Wang H , Paul B , Wang X , Kühl S , Strasser P . Structure, activity, and faradaic efficiency of nitrogen-doped porous carbon catalysts for direct electrochemical hydrogen peroxide production. ChemSusChem, 2018, 11(19): 3388–3395

[16]

Zhang J , Zhang G , Jin S , Zhou Y , Ji Q , Lan H , Liu H , Qu J . Graphitic N in nitrogen-doped carbon promotes hydrogen peroxide synthesis from electrocatalytic oxygen reduction. Carbon, 2020, 163: 154–161

[17]

Wang Y , Yang Z , Zhang C , Feng Y , Shao H , Chen J , Hu J , Zhang L . Fabricating carbon quantum dots of graphitic carbon nitride vis ultrasonic exfoliation for highly efficient H2O2 production. Ultrasonics Sonochemistry, 2023, 99: 106582

[18]

Yang Z , Zhang C , Mei Y , Zhang Y , Feng Y , Shao M , Hu J . Effect of nitrogen species in graphite carbon nitride on hydrogen peroxide production. Advanced Materials Interfaces, 2022, 9(27): 2201325

[19]

Wang M , Zhang N , Feng Y , Hu Z , Shao Q , Huang X . Partially pyrolyzed binary metal-organic framework nanosheets for efficient electrochemical hydrogen peroxide synthesis. Angewandte Chemie International Edition, 2020, 59(34): 14373–14377

[20]

Wang M , Dong X , Meng Z , Hu Z , Lin Y G , Peng C K , Wang H , Pao C W , Ding S , Li Y . . An efficient interfacial synthesis of two-dimensional metal-organic framework nanosheets for electrochemical hydrogen peroxide production. Angewandte Chemie International Edition, 2021, 60(20): 11190–11195

[21]

Wei S , Wu X , Zhu S , Wang Z , Wang J , Lu C Z , Xie Y . Efficient oxygen reduction through metal-free 3D covalent organic frameworks: a novel approach. Science China Materials, 2024, 67(11): 3589–3595

[22]

Yang Z , Zuo L , Luo B , Yang C , Wang S Q , Chew L , Zhu J , Zhang X . Designing heterocyclic covalent organic frameworks with tunable electronic structures for efficient electrosynthesis of hydrogen peroxide. Small, 2024, 20(45): 2403859

[23]

Gao J , Yang H B , Huang X , Hung S F , Cai W , Jia C , Miao S , Chen H M , Yang X , Huang Y . . Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst. Chem, 2020, 6(3): 658–674

[24]

Chen S , Luo T , Li X , Chen K , Fu J , Liu K , Cai C , Wang Q , Li H , Chen Y . . Identification of the highly active Co-N4 coordination motif for selective oxygen reduction to hydrogen peroxide. Journal of the American Chemical Society, 2022, 144(32): 14505–14516

[25]

Zhao X , Wang Y , Da Y , Wang X , Wang T , Xu M , He X , Zhou W , Li Y , Coleman J N . . Selective electrochemical production of hydrogen peroxide at zigzag edges of exfoliated molybdenum telluride nanoflakes. National Science Review, 2020, 7(8): 1360–1366

[26]

Ji Y , Liu Y , Zhang B W , Xu Z , Qi X , Xu X , Ren L , Du Y , Zhong J , Dou S X . Morphology engineering of atomic layer defect-rich CoSe2 nanosheets for highly selective electrosynthesis of hydrogen peroxide. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(37): 21340–21346

[27]

Zhang A , Jiang Z , Zhang S , Lan P , Miao N , Chen W , Huang N , Tian X , Liu Y , Cai Z . Coral-shaped Mn-CuS with hierarchical pores and crystalline defects for high-efficiency H2O2 production via electrocatalytic two-electron reduction. Applied Catalysis B: Environmental, 2023, 331: 122721

[28]

Munawar T , Bashir A , Batoo K M , Fatima S , Mukhtar F , Hussain S , Manzoor S , Ashiq M N , Khan S A , Koc M . . Construction of robust and durable Cu2Se-V2O5 nanosheet electrocatalyst for alkaline oxygen evolution reaction. Frontiers of Chemical Science and Engineering, 2024, 18(6): 65

[29]

Guo X , Lin S , Gu J , Zhang S , Chen Z , Huang S . Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: the power of single-atom catalysts. ACS Catalysis, 2019, 9(12): 11042–11054

[30]

Wang N , Ma S , Zuo P , Duan J , Hou B . Recent progress of electrochemical production of hydrogen peroxide by two-electron oxygen reduction reaction. Advanced Science, 2021, 8(15): 2100076

[31]

Siahrostami S , Verdaguer-Casadevall A , Karamad M , Deiana D , Malacrida P , Wickman B , Escudero-Escribano M , Paoli E A , Frydendal R , Hansen T W . . Enabling direct H2O2 production through rational electrocatalyst design. Nature Materials, 2013, 12(12): 1137–1143

[32]

Liu J , Jiang W , Sun L , Lv C . Bleaching flax roving with poly(acrylic acid) magnesium salt as oxygen bleaching stabilizer for hydrogen peroxide. Cellulose, 2021, 28(18): 11701–11712

[33]

Davari E , Ivey D G . Bifunctional electrocatalysts for Zn-air batteries. Sustainable Energy & Fuels, 2018, 2(1): 39–67

[34]

Montemore M M , van Spronsen M A , Madix R J , Friend C M . O2 activation by metal surfaces: implications for bonding and reactivity on heterogeneous catalysts. Chemical Reviews, 2018, 118(5): 2816–2862

[35]

Fajrial A K , Saputro A G , Agusta M K , Rusydi F , Nugraha N , Dipojono H K . First principles study of oxygen molecule interaction with the graphitic active sites of a boron-doped pyrolyzed Fe-N-C catalyst. Physical Chemistry Chemical Physics, 2017, 19(34): 23497–23504

[36]

Yang H , An N , Kang Z , Menezes P W , Chen Z . Understanding advanced transition metal-based two electron oxygen reduction electrocatalysts from the perspective of phase engineering. Advanced Materials, 2024, 36(25): 2400140

[37]

Zhang Y , Jiang H , Zhang C , Feng Y , Feng H , Zhu S , Hu J . High-efficiency oxygen reduction by late transition metal oxides to produce H2O2. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2024, 12(10): 6123–6133

[38]

Jiang H , Wang Y , Hu J , Shai X , Zhang C , Le T , Zhang L , Shao M . Phase regulation of WO3 for highly selective oxygen reduction to hydrogen peroxide. Chemical Engineering Journal, 2023, 452: 139449

[39]

Jiang H , Zhang C , Wang Z , Zhang Y , Le T , Mei Y , Feng Y , Hu J . Enhanced two-electron oxygen reduction for hydrogen peroxide production via fine-tuning the concentration of oxygen vacancies in MoO3–x. Applied Catalysis: General, 2023, 661: 119242

[40]

Wu J , Hou M , Chen Z , Hao W , Pan X , Yang H , Cen W , Liu Y , Huang H , Menezes P W . . Composition engineering of amorphous nickel boride nanoarchitectures enabling highly efficient electrosynthesis of hydrogen peroxide. Advanced Materials, 2022, 34(32): 2202995

[41]

Sheng H , Janes A N , Ross R D , Hofstetter H , Lee K , Schmidt J R , Jin S . Linear paired electrochemical valorization of glycerol enabled by the electro-Fenton process using a stable NiSe2 cathode. Nature Catalysis, 2022, 5(8): 716–725

[42]

Yuan Q , Zhao J , Mok D H , Zheng Z , Ye Y , Liang C , Zhou L , Back S , Jiang K . Electrochemical hydrogen peroxide synthesis from selective oxygen reduction over metal selenide catalysts. Nano Letters, 2022, 22(3): 1257–1264

[43]

Sheng H , Janes A N , Ross R D , Kaiman D , Huang J , Song B , Schmidt J R , Jin S . Stable and selective electrosynthesis of hydrogen peroxide and the electro-Fenton process on CoSe2 polymorph catalysts. Energy & Environmental Science, 2020, 13(11): 4189–4203

[44]

Sun Q , Xu G , Xiong B , Chen L , Shi J . Anion-tuned nickel chalcogenides electrocatalysts for efficient 2e ORR towards H2O2 production in acidic media. Nano Research, 2023, 16(4): 4729–4735

[45]

Li W , Wang D , Zhang Y , Tao L , Wang T , Zou Y , Wang Y , Chen R , Wang S . Defect engineering for fuel-cell electrocatalysts. Advanced Materials, 2020, 32(19): 1907879

[46]

Chen X , Huang T , Kuo D H , Sun H , Li P , Zelekew O A , Abdeta A B , Wu Q , Zhang J , Yuan Z . . Material design with the concept of solid solution-type defect engineering in realizing the conversion of an electrocatalyst of NiS2 into a photocatalyst for hydrogen evolution. Applied Catalysis B: Environmental, 2021, 298: 120542

[47]

Wu T , Dong C , Sun D , Huang F . Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts. Nanoscale, 2021, 13(3): 1581–1595

[48]

Yan D , Xia C , Zhang W , Hu Q , He C , Xia B Y , Wang S . Cation defect engineering of transition metal electrocatalysts for oxygen evolution reaction. Advanced Energy Materials, 2022, 12(45): 2202317

[49]

Byeon A , Choi J W , Lee H W , Yun W C , Zhang W , Hwang C K , Lee S Y , Han S S , Kim J M , Lee J W . CO2-derived edge-boron-doped hierarchical porous carbon catalysts for highly effective electrochemical H2O2 production. Applied Catalysis B: Environment and Energy, 2023, 329: 122557

[50]

Liu X , Liu X , Li C , Yang B , Wang L . Defect engineering of electrocatalysts for metal-based battery. Chinese Journal of Catalysis, 2023, 45: 27–87

[51]

Yang J , An L , Wang S , Zhang C , Luo G , Chen Y , Yang H , Wang D . Defects engineering of layered double hydroxide-based electrocatalyst for water splitting. Chinese Journal of Catalysis, 2023, 55: 116–136

[52]

Wu K , Lyu C , Cheng J , Ding W , Wu J , Wang Q , Lau W M , Zheng J . Defect engineering in transition-metal (Fe, Co, and Ni)-based electrocatalysts for water splitting. Carbon Energy, 2024, 6(6): e485

[53]

Wu X F , Li Z Y , Wang H , Wang J C , Xi G Q , Zhao X J , Zhang C X , Liao W G , Ho J C . Defect-engineered multi-intermetallic heterostructures as multisite electrocatalysts for efficient water splitting. Advanced Science, 2025, 12(26): 2502244

[54]

Zhu S , Song Y , Zi Y , Zhang C , Zhang Y , Qi Q , Yuan J , Hu J . Cation vacancy-induced lattice oxygen oxidation mechanism for ultra-stable OER electrocatalysis. Journal of Colloid and Interface Science, 2025, 692: 137532

[55]

Gao R , Pan L , Li Z , Shi C , Yao Y , Zhang X , Zou J J . Engineering facets and oxygen vacancies over hematite single crystal for intensified electrocatalytic H2O2 production. Advanced Functional Materials, 2020, 30(24): 1910539

[56]

Dong K , Liang J , Wang Y , Ren Y , Xu Z , Zhou H , Li L , Liu Q , Luo Y , Li T . . Plasma-induced defective TiO2–x with oxygen vacancies: a high-active and robust bifunctional catalyst toward H2O2 electrosynthesis. Chem Catalysis, 2021, 1(7): 1437–1448

[57]

Peng X , Zhang S , Bao Z , Ding L , Wang G , Shao Y , Xu Z , Ji W , Feng G , Wang S . . Oxygen vacancies on Nb2O5 enhanced the performance of H2O2 electrosynthesis from O2 reduction. Chemical Communications, 2022, 58(60): 8428–8431

[58]

Ding S , Zhang Y , Lou F , Li M , Huang Q , Yang K , Xia B , Tang C , Duan J , Antonietti M . . Oxygen-vacancy-type Mars-van Krevelen mechanism drives ultrafast dioxygen electroreduction to hydrogen peroxide. Materials Today: Energy, 2023, 38: 101430

[59]

Wang Y , Huang H , Wu J , Yang H , Kang Z , Liu Y , Wang Z , Menezes P W , Chen Z . Charge-polarized selenium vacancy in nickel diselenide enabling efficient and stable electrocatalytic conversion of oxygen to hydrogen peroxide. Advanced Science, 2023, 10(4): 2205347

[60]

Zhou Z , Kong Y , Tan H , Huang Q , Wang C , Pei Z , Wang H , Liu Y , Wang Y , Li S . . Cation-vacancy-enriched nickel phosphide for efficient electrosynthesis of hydrogen peroxides. Advanced Materials, 2022, 34(16): 2106541

[61]

Peng X , Bao Z , Zhang S , Li Y , Ding L , Shi H , Liu J , Zhong X , Li X , Wang J . Modulation of Lewis and Bronsted acid centers with oxygen vacancies for Nb2O5 electrocatalysts: towards highly efficient simultaneously electrochemical ozone and hydrogen peroxide production. Chemical Engineering Science, 2023, 271: 118573

[62]

Zhao G , Jiang Y , Dou S X , Sun W , Pan H . Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis. Science Bulletin, 2021, 66(1): 85–96

[63]

Li J , Wu J , Xie Z , Zhang X , Lv S , Shao H , Qu K , Cai W . Hetero-structural mass transfer channel boosts electrocatalytic oxygen reactions of metallic catalyst. Chemical Engineering Journal, 2022, 428: 131140

[64]

Xue Y , Luo D , Yang N , Ma G , Zhang Z , Hou J , Wang J , Ma C , Wang X , Jin M . . Engineering checkerboard-like heterostructured sulfur electrocatalyst towards high-performance lithium sulfur batteries. Chemical Engineering Journal, 2022, 440: 135990

[65]

Chen Y , Liu D , Zhao Q , Long X , Wang J , Zhang J , Fu X Z , Luo J L . IrOx-MoO3 nano-heterostructure electrocatalysts for efficient acidic water oxidation. Chemical Engineering Journal, 2023, 475: 146255

[66]

Hu J , Guo T , Zhong X , Li J , Mei Y , Zhang C , Feng Y , Sun M , Meng L , Wang Z . . In situ reconstruction of high-entropy heterostructure catalysts for stable oxygen evolution electrocatalysis under industrial conditions. Advanced Materials, 2024, 36(14): 2310918

[67]

Luo L , Liu Y , Chen S , Zhu Q , Zhang D , Fu Y , Li J , Han J , Gong S . FeNiCo|MnGaOx heterostructure nanoparticles as bifunctional electrocatalyst for Zn-air batteries. Small, 2024, 20(22): 2308756

[68]

Byeon A , Cho J , Kim J M , Chae K H , Park H Y , Hong S W , Ham H C , Lee S W , Yoon K R , Kim J Y . High-yield electrochemical hydrogen peroxide production from an enhanced two-electron oxygen reduction pathway by mesoporous nitrogen-doped carbon and manganese hybrid electrocatalysts. Nanoscale Horizons, 2020, 5(5): 832–838

[69]

Kronka M S , Cordeiro-Junior P J M , Mira L , dos Santos A J , Fortunato G V , Lanza M R V . Sustainable microwave-assisted hydrothermal synthesis of carbon-supported ZrO2 nanoparticles for H2O2 electrogeneration. Materials Chemistry and Physics, 2021, 267: 124575

[70]

Wang J , Zhang Y , Wang Y , Cho J , Chan T S , Ha Y , Haw S C , Kao C W , Wang Z , Lei J . . Heterostructure boosts a noble-metal-free oxygen-evolving electrocatalyst in acid. Energy & Environmental Science, 2024, 17(16): 5972–5983

[71]

Wu X , Yan Q , Wang H , Wu D , Zhou H , Li H , Yang S , Ma T , Zhang H . Heterostructured catalytic materials as advanced electrocatalysts: classification, synthesis, characterization, and application. Advanced Functional Materials, 2024, 34(42): 2404535

[72]

Xu Z , Liang J , Wang Y , Dong K , Shi X , Liu Q , Luo Y , Li T , Jia Y , Asiri A M . . Enhanced electrochemical H2O2 production via two-electron oxygen reduction enabled by surface-derived amorphous oxygen-deficient TiO2–x. ACS Applied Materials & Interfaces, 2021, 13(28): 33182–33187

[73]

Zhang L , Liang J , Yue L , Xu Z , Dong K , Liu Q , Luo Y , Li T , Cheng X , Cui G . . N-doped carbon nanotubes supported CoSe2 nanoparticles: a highly efficient and stable catalyst for H2O2 electrosynthesis in acidic media. Nano Research, 2022, 15(1): 304–309

[74]

Zhang L , Liang J , Yue L , Dong K , Xu Z , Li T , Liu Q , Luo Y , Liu Y , Gao S . . CoTe nanoparticle-embedded N-doped hollow carbon polyhedron: an efficient catalyst for H2O2 electrosynthesis in acidic media. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(38): 21703–21707

[75]

Zhou Y , Xu L , Wu J , Zhu W , He T , Yang H , Huang H , Cheng T , Liu Y , Kang Z . The operation active sites of O2 reduction to H2O2 over ZnO. Energy & Environmental Science, 2023, 16(8): 3526–3533

[76]

Zheng S L , Xu H M , Zhu H R , Shuai T Y , Zhan Q N , Huang C J , Li G R . Heterostructured electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2024, 12(30): 18832–18865

[77]

Liu S , Zhang Z , Dastafkan K , Shen Y , Zhao C , Wang M . Yttrium-doped NiMo-MoO2 heterostructure electrocatalysts for hydrogen production from alkaline seawater. Nature Communications, 2025, 16(1): 773

[78]

Cheng X , Dou S , Qin G , Wang B , Yan P , Isimjam T T , Yang X . Rational design of highly selective nitrogen-doped Fe2O3-CNTs catalyst towards H2O2 generation in alkaline media. International Journal of Hydrogen Energy, 2020, 45(11): 6128–6137

[79]

Dai C , Li R , Guo H , Liang S , Shen H , Thomas T , Yang M . Nitrogen, sulfur co-doped carbon coated zinc sulfide for efficient hydrogen peroxide electrosynthesis. Dalton Transactions, 2021, 50(16): 5416–5419

[80]

Zheng Y R , Hu S , Zhang X L , Ju H , Wang Z , Tan P J , Wu R , Gao F Y , Zhuang T , Zheng X . . Black phosphorous mediates surface charge redistribution of CoSe2 for electrochemical H2O2 production in acidic electrolytes. Advanced Materials, 2022, 34(43): 2205414

[81]

Li Y , Zhang L A , Qin Y , Chu F , Kong Y , Tao Y , Li Y , Bu Y , Ding D , Liu M . Crystallinity dependence of ruthenium nanocatalyst toward hydrogen evolution reaction. ACS Catalysis, 2018, 8(7): 5714–5720

[82]

Lu X F , Yu L , Lou X W . Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. Science Advances, 2019, 5(2): eaav6009

[83]

Zhang S , Qiu J , Zhang Y , Lin Y , Liu R , Yuan M , Sun G , Nan C . Crystal phase conversion on cobalt oxide: stable adsorption toward LiO2 for film-like discharge products generation in Li-O2 battery. Small, 2022, 18(26): 2201150

[84]

He C , Liu Q , Wang H , Xia C , Li F M , Guo W , Xia B Y . Regulating reversible oxygen electrocatalysis by built-in electric field of heterojunction electrocatalyst with modified d-band. Small, 2023, 19(15): 2207474

[85]

Li R , Yang S , Zhang Y , Yu G , Wang C , Chen C , Wu G , Sun R , Wang G , Zheng X . Short-range order in amorphous nickel oxide nanosheets enables selective and efficient electrochemical hydrogen peroxide production. Cell Reports: Physical Science, 2022, 3(3): 100788

[86]

Wu Z , Wang T , Zou J J , Li Y , Zhang C . Amorphous nickel oxides supported on carbon nanosheets as high-performance catalysts for electrochemical synthesis of hydrogen peroxide. ACS Catalysis, 2022, 12(10): 5911–5920

[87]

Huang J , Fu C , Chen J , Senthilkumar N , Peng X , Wen Z . The enhancement of selectivity and activity for two-electron oxygen reduction reaction by tuned oxygen defects on amorphous hydroxide catalysts. CCS Chemistry, 2022, 4(2): 566–583

[88]

Cao Y , Yuan S , Zhou W , Hai Y , Li X , Luo M . Metal-organic framework derived low-crystallinity cobalt-nitrogen-carbon electrocatalysts for nitrate reduction to ammonia. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2024, 12(44): 30409–30419

[89]

Chen S Y , Guan J Q . Structural regulation strategies of nitrogen reduction electrocatalysts. Chinese Journal of Catalysis, 2024, 66: 20–52

[90]

Liu S , Zhang Z , Bao J , Lan Y , Tu W , Han M , Dai Z . Controllable synthesis of tetragonal and cubic phase Cu2Se nanowires assembled by small nanocubes and their electrocatalytic performance for oxygen reduction reaction. Journal of Physical Chemistry C, 2013, 117(29): 15164–15173

[91]

Surrnto B H R , Wang D , Azofra L M , Harb M , Cavallo L , Jalili R , Mitchell D R G , Chatti M , MacFarlane D R . MoS2 polymorphic engineering enhances selectivity in the electrochemical reduction of nitrogen to ammonia. ACS Energy Letters, 2019, 4(2): 430–435

[92]

Chen Z , Chen M , Yan X , Jia H , Fei B , Ha Y , Qing H , Yang H , Liu M , Wu R . Vacancy occupation-driven polymorphic transformation in cobalt ditelluride for boosted oxygen evolution reaction. ACS Nano, 2020, 14(6): 6968–6979

[93]

Rao T , Wang H , Zeng Y J , Guo Z , Zhang H , Liao W . Phase transitions and water splitting applications of 2D transition metal dichalcogenides and metal phosphorous trichalcogenides. Advanced Science, 2021, 8(10): 2002284

[94]

Gond R , Singh S , Zhao X , Singh D , Ahuja R , Fichtner M , Barpanda P . Pyrophosphate Na2CoP2O7 polymorphs as efficient bifunctional oxygen electrocatalysts for zinc-air batteries. ACS Applied Materials & Interfaces, 2022, 14(36): 40761–40770

[95]

Chen Z , Wu J , Chen Z , Yang H , Zou K , Zhao X , Liang R , Dong X , Menezes P W , Kang Z . Entropy enhanced perovskite oxide ceramic for efficient electrochemical reduction of oxygen to hydrogen peroxide. Angewandte Chemie International Edition, 2022, 61(21): e202200086

[96]

Geng S , Ji Y , Yang S , Su J , Hu Z , Chan T S , Yu H , Li Y , Chin Y Y , Huang X . . Phosphorus optimized metastable hexagonal-close-packed phase nickel for efficient hydrogen peroxide production in neutral media. Advanced Functional Materials, 2023, 33(25): 2300636

[97]

Hausmann J N , Menezes P W . Why should transition metal chalcogenides be investigated as water splitting precatalysts even though they transform into (oxyhydr)oxides. Current Opinion in Electrochemistry, 2022, 34: 100991

[98]

Ahmed F , Rodríguez-Fernández C , Fernandez H A , Zhang Y , Shafi A M , Uddin M G , Cui X , Yoon H H , Mehmood N , Liapis A C . . Deterministic polymorphic engineering of MoTe2 for photonic and optoelectronic applications. Advanced Functional Materials, 2023, 33(33): 2302051

[99]

Zhang S , Feng G , Bao Z , Peng X , Jiang C , Shao Y , Wang S , Wang J . Oxygen vacancy boosts the V2O5 performance for the electrochemical H2O2 product. Industrial & Engineering Chemistry Research, 2023, 62(15): 6113–6120

[100]

Balogun M S , Qiu W , Huang Y , Yang H , Xu R , Zhao W , Li G R , Ji H , Tong Y . Cost-effective alkaline water electrolysis based on nitrogen- and phosphorus-doped self-supportive electrocatalysts. Advanced Materials, 2017, 29(34): 1702095

[101]

Gao W , Yan M , Cheung H Y , Xia Z , Zhou X , Qin Y , Wong C Y , Ho J C , Chang C R , Qu Y . Modulating electronic structure of CoP electrocatalysts towards enhanced hydrogen evolution by Ce chemical doping in both acidic and basic media. Nano Energy, 2017, 38: 290–296

[102]

Chen Q , Ma C , Yan S , Liang J , Dong K , Luo Y , Liu Q , Li T , Wang Y , Yue L . . Greatly facilitated two-electron electroreduction of oxygen into hydrogen peroxide over TiO2 by Mn doping. ACS Applied Materials & Interfaces, 2021, 13(39): 46659–46664

[103]

Zheng Y , Xu X , Chen J , Wang Q . Surface O2 regulation on POM electrocatalyst to achieve accurate 2e/4e ORR control for H2O2 production and Zn-air battery assemble. Applied Catalysis B: Environment and Energy, 2021, 285: 119788

[104]

Deng Z , Li L , Ren Y , Ma C , Liang J , Dong K , Liu Q , Luo Y , Li T , Tang B . . Highly efficient two-electron electroreduction of oxygen into hydrogen peroxide over Cu-doped TiO2. Nano Research, 2022, 15(5): 3880–3885

[105]

Feng H , Song Y , Zhang Y , Qi Q , Zhang C , Feng Y , Hu J . Electronic structure engineering of NiO via cation doping for efficient and stable electrochemical H2O2 synthesis. Chemical Engineering Journal, 2025, 506: 160364

[106]

Li Z , Lv L , Wang J , Ao X , Ruan Y , Zha D , Hong G , Wu Q , Lan Y , Wang C . . Engineering phosphorus-doped LaFeO3–δ perovskite oxide as robust bifunctional oxygen electrocatalysts in alkaline solutions. Nano Energy, 2018, 47: 199–209

[107]

Liu T , Diao P , Lin Z , Wang H . Sulfur and selenium doped nickel chalcogenides as efficient and stable electrocatalysts for hydrogen evolution reaction: the importance of the dopant atoms in and beneath the surface. Nano Energy, 2020, 74: 104787

[108]

Bhanja P , Kim Y , Paul B , Kaneti Y V , Alothman A A , Bhaumik A , Yamauchi Y . Microporous nickel phosphonate derived heteroatom doped nickel oxide and nickel phosphide: efficient electrocatalysts for oxygen evolution reaction. Chemical Engineering Journal, 2021, 405: 126803

[109]

Kwon T , Kim T , Son Y , Lee K . Dopants in the design of noble metal nanoparticle electrocatalysts and their effect on surface energy and coordination chemistry at the nanocrystal surface. Advanced Energy Materials, 2021, 11(22): 2100265

[110]

Yan Y , Wang P , Lin J , Cao J , Qi J . Modification strategies on transition metal-based electrocatalysts for efficient water splitting. Journal of Energy Chemistry, 2021, 58: 446–462

[111]

Chen Y , Miao Y , Hu X , Kim D , Zhu Y , Su Y , Fan Y , Qiao H , Yu B , Chen Y . Evaluating the functions of the key dopant elements in multi-metal oxide electrocatalysts for high-performance Li-O2 batteries. Energy Storage Materials, 2023, 63: 102989

[112]

Li Y , Wang T , Yao Z , Chen Q , Li Q . Enhancing the performance of platinum group metal-based electrocatalysts through nonmetallic element doping. Chinese Journal of Catalysis, 2024, 56: 51–73

[113]

Wu Y , Li J , Sui G , Chai D F , Li Y , Guo D , Chu D , Liang K . Interface and doping engineering of V2C-MXene-based electrocatalysts for enhanced electrocatalysis of overall water splitting. Carbon Energy, 2024, 6(10): e583

[114]

Fu H , Zhang N , Lai F , Zhang L , Wu Z , Li H , Zhu H , Liu T . Lattice strained B-doped Ni nanoparticles for efficient electrochemical H2O2 synthesis. Small, 2022, 18(38): 2203510

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3257KB)

293

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/