Preparation of TiO2@MCC modified PA6 composite membranes and their water–oil separation performance

Pengcheng Hu , Aonan Lai , Shufeng Zhou

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (4) : 29

PDF (1860KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (4) : 29 DOI: 10.1007/s11705-025-2530-9
RESEARCH ARTICLE

Preparation of TiO2@MCC modified PA6 composite membranes and their water–oil separation performance

Author information +
History +
PDF (1860KB)

Abstract

Using the chemically stable and cost-effective nylon PA6 as a substrate with the help of the high hydrophilicity of microcrystalline cellulose (MCC) and TiO2 nanoparticles to build micro-nanostructures on the surface of the nylon PA6, the superhydrophilic and underwater oleophobic composite membrane was fabricated to achieve the high efficiency of water–oil separation. TiO2 nanoparticles wrapped in MCC were evenly dispersed on the composite membrane, and the pore size of the composite membrane decreased with increasing MCC mass fraction. MCC can be tightly bound to the surface of the PA6 membrane because of its excellent film-forming properties and ability to cross-link with PA6. The modification of TiO2 and MCC led to a reduction in the surface adhesion of the composite membrane to oil droplets. The separation efficiency of the composite membrane for water–oil emulsions followed the order TiO2@2MCC-PA6 > TiO2@MCC-PA6 > TiO2-PA6 > PA6, and the change in filtration flux was exactly the opposite. TiO2@MCC-PA6 was the best composite membrane for three water–oil emulsions with sodium dodecyl sulfate (SDS), and its separation efficiency was over 96%. The water contact angle and underwater oil contact angle of TiO2@MCC-PA6 changed slightly after it was immersed in acidic and alkaline solutions for 36 h. The filtration flux and separation efficiency of TiO2@MCC-PA6 for n-hexane/SDS/water were still above 3100 L·m −2·h−1·bar−1 and 93%, respectively, after 50 cycles.

Graphical abstract

Keywords

composite membrane / water–oil separation / microcrystalline cellulose / surface modification / separation efficiency

Cite this article

Download citation ▾
Pengcheng Hu, Aonan Lai, Shufeng Zhou. Preparation of TiO2@MCC modified PA6 composite membranes and their water–oil separation performance. Front. Chem. Sci. Eng., 2025, 19(4): 29 DOI:10.1007/s11705-025-2530-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Deng Y , Zhang G , Bai R , Shen S , Zhou X , Wyman I . Fabrication of superhydrophilic and underwater superoleophobic membranes via an in situ crosslinking blend strategy for highly efficient oil/water emulsion separation. Journal of Membrane Science, 2019, 569: 60–70

[2]

Xie A , Cui J , Yang J , Chen Y , Lang J , Li C , Yan Y , Dai J . Graphene oxide/Fe(III)-based metal-organic framework membrane for enhanced water purification based on synergistic separation and photo-Fenton processes. Applied Catalysis B: Environmental, 2020, 264: 118548

[3]

Gao J , Wang J , Xu Q , Wu S , Chen Y . Regenerated cellulose strongly adhered by a supramolecular adhesive onto the PVDF membrane for a highly efficient oil/water separation. Green Chemistry, 2021, 23(15): 5633–5646

[4]

Zhao C , Zhou J , Yan Y , Yang L , Xing G , Li H , Wu P , Wang M , Zheng H . Application of coagulation/flocculation in oily wastewater treatment: a review. Science of the Total Environment, 2021, 765: 142795

[5]

Oliveira L M T M , Saleem J , Bazargan A , Duarte J L D , McKay G , Meili L . Sorption as a rapidly response for oil spill accidents: A material and mechanistic approach. Journal of Hazardous Materials, 2021, 407: 124842

[6]

Doshi B , Sillanpää M , Kalliola S . A review of bio-based materials for oil spill treatment. Water Research, 2018, 135: 262–277

[7]

Zhang G , Yuan S , Cao S , Yan G , Wang X , Yang J , Van der Bruggen B . Functionalized poly(arylene ether sulfone) containing hydroxyl units for the fabrication of durable, superhydrophobic oil/water separation membranes. Nanoscale, 2019, 11(15): 7166–7175

[8]

Dou Y , Tian D , Sun Z , Liu Q , Zhang N , Kim J H , Jiang L , Dou S X . Fish gill inspired crossflow for efficient and continuous collection of spilled oil. ACS Nano, 2017, 11(3): 2477–2485

[9]

Ge J , Zong D , Jin Q , Yu J , Ding B . Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions. Advanced Functional Materials, 2018, 28(10): 1705051

[10]

Gong J , Xiang B , Sun Y , Li J . Janus smart materials with asymmetrical wettability for on-demand oil/water separation: a comprehensive review. Journal of Materials Chemistry A, 2023, 11(46): 25093–25114

[11]

Xiang B , Gong J , Jin R , Zhao X , Li J . Advanced absorption-storage water molecules strategy reinforces antifouling property for stable oil/water emulsions separation. Separation and Purification Technology, 2025, 355: 129748

[12]

Wu X , Feng S , Mao C , Liu C , Zhang Y , Zhou Y , Sheng X . Superhydrophobic and superlipophilic LDH flower balls/cellulose membranes for efficient oil-water separation. New Journal of Chemistry, 2023, 47(15): 7093–7100

[13]

Zhang X , Pan Y , Gao Q , Zhao J , Wang Y , Liu C , Shen C , Liu X . Facile fabrication of durable superhydrophobic mesh via candle soot for oil-water separation. Progress in Organic Coatings, 2019, 136: 105253

[14]

Feng L , Zhang Z , Mai Z , Ma Y , Liu B , Jiang L , Zhu D . A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angewandte Chemie International Edition, 2004, 43(15): 2012–2014

[15]

Velayi E , Norouzbeigi R . A mesh membrane coated with dual-scale superhydrophobic nano zinc oxide: efficient oil-water separation. Surface and Coatings Technology, 2020, 385: 125394

[16]

Wang C , Shao Y , Zhang K , Wu B , Du X , Li X , Zhang X , Liang F , Yang Z . Facile approach to fabricate a high-performance superhydrophobic mesh. ACS Applied Materials & Interfaces, 2021, 13(13): 15720–15726

[17]

Cheng X , Jiao Y , Sun Z , Yang X , Cheng Z , Bai Q , Zhang Y , Wang K , Shao L . Constructing scalable superhydrophobic membranes for ultrafast water-oil separation. ACS Nano, 2021, 15(2): 3500–3508

[18]

Yin Z , Li Z , Deng Y , Xue M , Chen Y , Ou J , Xie Y , Luo Y , Xie C , Hong Z . Multifunctional CeO2-coated pulp/cellulose nanofibers (CNFs) membrane for wastewater treatment: effective oil/water separation, organic contaminants photodegradation, and anti-bioadhesion activity. Industrial Crops and Products, 2023, 197: 116672

[19]

Feng S , Zhao J , Zhang P , Gao Y , Yun J . Superhydrophilic/underwater superoleophobic oil-in-water emulsion separation membrane modified by the co-deposition of polydopamine and chitosan-tripolyphosphate nanoparticles. Journal of Environmental Chemical Engineering, 2022, 10(3): 107407

[20]

Xiong Z , Lin H , Zhong Y , Qin Y , Li T , Liu F . Robust superhydrophilic polylactide (PLA) membranes with a TiO2 nano-particle inlaid surface for oil/water separation. Journal of Materials Chemistry A, 2017, 5(14): 6538–6545

[21]

Cao M , Chen Y , Huang X , Sun L , Xu J , Yang K , Zhao X , Lin L . Construction of PA6-rGO nanofiber membrane via electrospraying combining electrospinning processes for emulsified oily sewage purification. Journal of the Taiwan (China) Institute of Chemical Engineers, 2021, 118: 232–244

[22]

Chen T , Hong J , Peng C , Chen G , Yuan C , Xu Y , Zeng B , Dai L . Superhydrophobic and flame retardant cotton modified with DOPO and fluorine-silicon-containing crosslinked polymer. Carbohydrate Polymers, 2019, 208: 14–21

[23]

Cheng Q , Guan C , Li Y , Zhu J , Zeng J . Robust and durable superhydrophobic cotton fabrics via a one-step solvothermal method for efficient oil/water separation. Cellulose, 2019, 26(4): 2861–2872

[24]

Yuan J , Cui C , Qi B , Wei J , Qaisrani M A . Study on oil-water separation of selective-wettability meshes with different Micro/Nano structures. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2020, 584: 124026

[25]

Xie A , Cui J , Yang J , Chen Y , Dai J , Lang J , Li C , Yan Y . Photo-Fenton self-cleaning membranes with robust flux recovery for an efficient oil/water emulsion separation. Journal of Materials Chemistry A, 2019, 7(14): 8491–8502

[26]

Thota S , Somisetti V , Kulkarni S , Kumar J , Nagarajan R , Mosurkal R . Covalent functionalization of cellulose in cotton and a nylon-cotton blend with phytic acid for flame retardant properties. Cellulose, 2020, 27(1): 11–24

[27]

Swar S , Máková V , Stibor I . The covalent tethering of poly(ethylene glycol) to nylon 6 surface via N,N′-disuccinimidyl carbonate conjugation: a new approach in the fight against pathogenic bacteria. Polymers, 2020, 12(10): 2181

[28]

Wang W , Gu B , Liang L , Hamilton W A , Wesolowski D J . Synthesis of rutile (α-TiO2) nanocrystals with controlled size and shape by low-temperature hydrolysis: effects of solvent composition. Journal of Physical Chemistry B, 2004, 108(39): 14789–14792

[29]

Zhao H , Kwak J H , Conrad Zhang Z , Brown H M , Arey B W , Holladay J E . Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydrate Polymers, 2007, 68(2): 235–241

[30]

Thompson R , Austin D , Wang C , Neville A , Lin L . Low-frequency plasma activation of nylon 6. Applied Surface Science, 2021, 544: 148929

[31]

Louette P , Bodino F , Pireaux J J . Nylon 6 (N6) reference XPS reference core level and energy loss spectra. Surface Science Spectra, 2005, 12(1): 12–17

[32]

Lu Y , Yuan W . Superhydrophobic/superoleophilic and reinforced ethyl cellulose sponges for oil/water separation: synergistic strategies of cross-linking, carbon nanotube composite, and nanosilica modification. ACS Applied Materials & Interfaces, 2017, 9(34): 29167–29176

[33]

Zhang S , Pan Y , Wang W , Lin R , Liu X . Preparation of cellulose/chitosan superoleophobic aerogel with cellular pores for oil/water separation. Industrial Crops and Products, 2023, 194: 116303

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1860KB)

Supplementary files

FCE-24083-OF-HP_suppl_1

2515

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/