Reconstructing cobalt disulfide nanosheets through sulfur doping hexamethylenetetramine regulated β-Co(OH)2 for oxygen evolution reaction

Xiangtai Zhang , Lei Wu

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (3) : 21

PDF (1232KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (3) : 21 DOI: 10.1007/s11705-025-2525-6
RESEARCH ARTICLE

Reconstructing cobalt disulfide nanosheets through sulfur doping hexamethylenetetramine regulated β-Co(OH)2 for oxygen evolution reaction

Author information +
History +
PDF (1232KB)

Abstract

Exploiting advanced transition metal based electrocatalysts is critical for the oxygen evolution reaction (OER) due to their high efficiency in an alkaline environment for water splitting. Herein, CoS2 nanosheets were synthesized through simple hydrothermal process and sulfurized layered β-Co(OH)2 nanosheets as a precursor. The regulation strategy of hexamethylenetetramine was employed to create layered single-crystal β-Co(OH)2 nanosheets. X-ray absorption fine structure indicates the crystal phase reconstructions occur on β-Co(OH)2 surface during the sulfidation reaction. The sulfurized β-Co(OH)2 nanosheets present an overpotential of only 297 mV to reach 10 mA·cm–2, a low Tafel slope of 71.7 mV·dec–1 and excellent stability for OER. The results clarified that the CoS2 nanosheets excellent OER performance is attributable to cobalt sulfide sheet structure and structural changes by sulfur dopants. The results of the sulfurized layered β-Co(OH)2 to produce CoS2 nanosheets indicate that this strategy may represents a potential replacement for oxygen evolution application, particularly for the large-scale production of water splitting catalysts.

Graphical abstract

Keywords

sulfidation / β-cobalt hydroxide / cobalt disulfide / electrocatalysis / oxygen evolution reaction

Cite this article

Download citation ▾
Xiangtai Zhang, Lei Wu. Reconstructing cobalt disulfide nanosheets through sulfur doping hexamethylenetetramine regulated β-Co(OH)2 for oxygen evolution reaction. Front. Chem. Sci. Eng., 2025, 19(3): 21 DOI:10.1007/s11705-025-2525-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang Y , Zhu M S , Huang Y , Pei Z X , Li H F , Wang Z F , Xue Q , Zhi C Y . Multifunctional energy storage and conversion devices. Advanced Materials, 2016, 28(38): 8344–8364

[2]

Fagiolari L , Sampò M , Lamberti A , Amici J , Francia C , Bodoardo S , Bella F . Integrated energy conversion and storage devices: interfacing solar cells, batteries and supercapacitors. Energy Storage Materials, 2022, 51: 400–434

[3]

Venkatesan S V , Nandy A , Karan K , Larter S R , Thangadurai V . Recent advances in the unconventional design of electrochemical energy storage and conversion devices. Electrochemical Energy Reviews, 2022, 5(4): 16

[4]

Li L , Wang P , Shao Q , Huang X . Metallic nanostructures with low dimensionality for electrochemical water splitting. Chemical Society Reviews, 2020, 49(10): 3072–3106

[5]

Chu S , Cui Y , Liu N . The path towards sustainable energy. Nature Materials, 2016, 16(1): 16–22

[6]

Ifkovits Z P , Evans J M , Meier M C , Papadantonakis K M , Lewis N S . Decoupled electrochemical water-splitting systems: a review and perspective. Energy & Environmental Science, 2021, 14(9): 4740–4759

[7]

Zhang X Y , Xia L X , Zhao G Q , Zhang B X , Chen Y P , Chen J , Gao M X , Jiang Y Z , Liu Y F , Pan H G . . Fast and durable alkaline hydrogen oxidation reaction at the electron-deficient ruthenium-ruthenium oxide interface. Advanced Materials, 2023, 35(9): 2208821

[8]

Liao F , Yin K , Ji Y J , Zhu W J , Fan Z L , Li Y Y , Zhong J , Shao M W , Kang Z H , Shao Q . Iridium oxide nanoribbons with metastable monoclinic phase for highly efficient electrocatalytic oxygen evolution. Nature Communications, 2023, 14(1): 1248

[9]

Guo T Q , Li L D , Wang Z C . Recent development and future perspectives of amorphous transition metal-based electrocatalysts for oxygen evolution reaction. Advanced Energy Materials, 2022, 12(24): 2200827

[10]

Zhang X Y , Feng C , Dong B , Liu C G , Chai Y M . High-voltage-enabled stable cobalt species deposition on MnO2 for water oxidation in acid. Advanced Materials, 2023, 35(13): 2207066

[11]

Yu N , Ma Y , Ren J K , Zhang Z J , Liu H J , Nan J , Li Y C , Chai Y M , Dong B . High negative voltage activating perovskite oxide with bi-vacancy synergistic regulation for water oxidation. Chemical Engineering Journal, 2023, 478: 147415

[12]

Luan C L , Liu G L , Liu Y J , Yu L , Wang Y , Xiao Y , Qiao H Y , Dai X P , Zhang X . Structure effects of 2D materials on α-nickel hydroxide for oxygen evolution reaction. ACS Nano, 2018, 12(4): 3875–3885

[13]

Xin S S , Tang Y , Jia B H , Zhang Z F , Li C P , Bao R , Li C J , Yi J H , Wang J S , Ma T Y . Coupling adsorbed evolution and lattice oxygen mechanism in Fe-Co(OH)2/Fe2O3 heterostructure for enhanced electrochemical water oxidation. Advanced Functional Materials, 2023, 33(45): 2305243

[14]

Fan R Y , Zhou Y N , Li M X , Xie J Y , Yu W L , Chi J Q , Wang L , Yu J F , Chai Y M , Dong B . In situ construction of Fe(Co)OOH through ultra-fast electrochemical activation as real catalytic species for enhanced water oxidation. Chemical Engineering Journal, 2021, 426: 131943

[15]

Wang L , Lin C , Zhang F X , Jin J . Phase transformation guided single-layer β-Co(OH)2 nanosheets for pseudocapacitive electrodes. ACS Nano, 2014, 8(4): 3724–3734

[16]

Sun X , Zhu G L , Yang L , Zheng D C , Zhang J , Wen H , Feng H , Guan X , Wang H J , Yao Y D . Pyrolysis of a self-supported dodecyl sulfate anion-intercalated Co(OH)2 nanosheet with enlarged amorphous phase content towards enhanced activity for alkaline water oxidation. Chemical Communications (Cambridge), 2019, 55(75): 11211–11214

[17]

McAteer D , Godwin I J , Ling Z , Harvey A , He L , Boland C S , Vega-Mayoral V , Szydłowska B , Rovetta A A , Backes C . . Liquid exfoliated Co(OH)2 nanosheets as low-cost, yet high-performance, catalysts for the oxygen evolution reaction. Advanced Energy Materials, 2018, 8(15): 1702965

[18]

Wang Y J , Li A S , Cheng C W . Ultrathin Co(OH)2 nanosheets@nitrogen-doped carbon nanoflake arrays as efficient air cathodes for rechargeable Zn-air batteries. Small, 2021, 17(35): 2101720

[19]

Lu X Y , Xue H R , Gong H , Bai M J , Tang D M , Ma R Z , Sasaki T . 2D layered double hydroxide nanosheets and their derivatives toward efficient oxygen evolution reaction. Nano-Micro Letters, 2020, 12(1): 86

[20]

Cui H T , Zhao Y A , Ren W Z , Wang M M , Liu Y . Large scale selective synthesis of α-Co(OH)2 and β-Co(OH)2 nanosheets through a fluoride ions mediated phase transformation process. Journal of Alloys and Compounds, 2013, 562: 33–37

[21]

Zhao Q , Liu G Q , Zhang H W , Li Y , Cai W P . Strong SERS performances of ultrathin α-Co(OH)2 nanosheets to the toxic organophosphorus molecules and hydrogen bond-induced charge transfer mechanism. Advanced Materials Interfaces, 2017, 5(3): 1700709

[22]

Cao B , Luo C H , Lao J , Chen H Q , Qi R J , Lin H C , Peng H . Facile synthesis of 3D transition-metal-doped α-Co(OH)2 nanomaterials in water-methanol mediated with ammonia for oxygen evolution reaction. ACS Omega, 2019, 4(15): 16612–16618

[23]

Dileep N P , Vineesh T V , Sarma P V , Chalil M V , Prasad C S , Shaijumon M M . Electrochemically exfoliated β-Co(OH)2 nanostructures for enhanced oxygen evolution electrocatalysis. ACS Applied Energy Materials, 2020, 3(2): 1461–1467

[24]

Lau G C , Sather N A , Sai H , Waring E M , Deiss-Yehiely E , Barreda L , Beeman E A , Palmer L C , Stupp S I . Oriented multiwalled organic-Co(OH)2 nanotubes for energy storage. Advanced Functional Materials, 2018, 28(3): 1702320

[25]

Gaikar P S , Navale S T , Gaikwad S L , Al-Osta A , Jadhav V V , Arjunwadkar P R , Naushad M , Mane R S . Pseudocapacitive performance of solution-processed β-Co(OH)2 anode monitored through its surface morphology and area. Dalton Transactions, 2017, 46(10): 3393–3399

[26]

Gao S , Sun Y F , Lei F C , Liang L , Liu J W , Bi W T , Pan B C , Xie Y . Ultrahigh energy density realized by a single-layer β-Co(OH)2 all-solid-state asymmetric supercapacitor. Angewandte Chemie International Edition, 2014, 53(47): 12789–12793

[27]

Hu J L , Song J , Lan D H , Tian Q H . Ultrathin CoOOH/Co(OH)2 hybrid nanosheets for high-performance anodes of lithium-ion batteries. Journal of Alloys and Compounds, 2023, 935: 168076

[28]

Zhang J Y , Liu Y C , Sun C Q , Xi P X , Peng S L , Gao D Q , Xue D S . Accelerated hydrogen evolution reaction in CoS2 by transition-metal doping. ACS Energy Letters, 2018, 3(4): 779–786

[29]

Shen W , Zhu J M , Hu Y , Yin J , Zheng Y , Xi P X . Applications of rare earth promoted transition metal sulfides in electrocatalysis. Chinese Journal of Chemistry, 2023, 41(14): 1740–1752

[30]

Pei L , Zhong J S , Li T Z , Bai W F , Wu S T , Yuan Y J , Chen Y F , Yu Z T , Yan S C , Zou Z G . CoS2@N-doped carbon core-shell nanorod array grown on Ni foam for enhanced electrocatalytic water oxidation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(14): 6795–6803

[31]

Kang Y , He Y K , Pohl D , Rellinghaus B , Chen D , Schmidt M , Süß V , Mu Q G , Li F , Yang Q . . Identification of interface structure for a topological CoS2 single crystal in oxygen evolution reaction with high intrinsic reactivity. ACS Applied Materials & Interfaces, 2022, 14(17): 19324–19331

[32]

Deng S Z , Cherian C T , Liu X L , Tan H R , Yeo L H , Yu X J , Rusydi A , Chowdari B V R , Fan H M , Sow C H . Ultrathin hexagonal hybrid nanosheets synthesized by graphene oxide-assisted exfoliation of β-Co(OH)2 mesocrystals. Chemistry, 2014, 20(39): 12444–12452

[33]

Ren W C , Ma W , Umair M M , Zhang S F , Tang B T . CoO/Co-activated porous carbon cloth cathode for high performance lithium sulfur batteries. ChemSusChem, 2018, 11(16): 2695–2702

[34]

Sun H M , Tian C Y , Fan G L , Qi J N , Liu Z T , Yan Z H , Cheng F Y , Chen J , Li C P , Du M . Boosting activity on Co4N porous nanosheet by coupling CeO2 for efficient electrochemical overall water splitting at high current densities. Advanced Functional Materials, 2020, 30(32): 1910596

[35]

Peng S J , Li L L , Han X P , Sun W P , Srinivasan M , Mhaisalkar S G , Cheng F Y , Yan Q Y , Chen J , Ramakrishna S . Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angewandte Chemie, 2014, 126(46): 1–7

[36]

Pan Y L , Cheng X D , Huang Y J , Gong L L , Zhang H P . CoS2 nanoparticles wrapping on flexible freestanding multichannel carbon nanofibers with high performance for Na-ion batteries. ACS Applied Materials & Interfaces, 2017, 9(41): 35820–35828

[37]

Zhang X T , Xu J D , Wu L . Hexamethylenetetramine-derived pyridinic N abundant porous carbon-supported Co/Co-Nx nanoparticles as highly efficient oxygen reduction catalyst and zinc-air battery cathode. Materials Today Sustainability, 2022, 19: 100180

[38]

Zhang X T , Hu S Z , Zhang M Y , Zhang X S . Glucose-hexamethylenetetramine-derived Co, N co-doped carbon nanoflowers with encapsulated Co@Co3O4 as efficient bifunctional oxygen electrocatalyst for zinc-air batteries. ChemNanoMat: Chemistry of Nanomaterials for Energy, Biology and More, 2023, 9(7): e202300221

[39]

Borthakur P , Boruah P K , Das M R , Ibrahim M M , Altalhi T , El-Sheshtawy H S , Szunerits S , Boukherroub R , Amin M A . CoS2 nanoparticles supported on rGO, g-C3N4, BCN, MoS2, and WS2 two-dimensional nanosheets with excellent electrocatalytic performance for overall water splitting: electrochemical studies and DFT calculations. ACS Applied Energy Materials, 2021, 4(2): 1269–1285

[40]

Liu Y W , Li J , Huang W T , Zhang Y , Wang M J , Gao X S , Wang X , Jin M L , Hou Z P , Zhou G F . . Surface-induced 2D/1D hetero-structured growth of ReS2/CoS2 for high performance electro-catalyst. ACS Applied Materials & Interfaces, 2020, 12(30): 33586–33594

[41]

Ulaganathan M , Maharjan M , Yan Q Y , Aravindan V , Madhavi S . β-Co(OH)2 nanosheets: a superior pseudocapacitive electrode for high energy supercapacitors. Chemistry, 2017, 12: 2127–2133

[42]

Roca A G , Golosovsky I V , Winkler E , López-Ortega A , Estrader M , Zysler R D , Baró M D , Nogués J . Unravelling the elusive antiferromagnetic order in wurtzite and zinc blende CoO polymorph nanoparticles. Small, 2018, 14(15): 1703963

[43]

Wang Z C , Xu W J , Chen X K , Peng Y H , Song Y Y , Lv C X , Liu H L , Sun J W , Yuan D , Li X Y . . Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis. Advanced Functional Materials, 2019, 29(33): 1902875

[44]

Wu D , Wei Y C , Ren X , Ji X Q , Liu Y W , Guo X D , Liu Z A , Asiri A M , Wei Q , Sun X P . Co(OH)2 nanoparticle-encapsulating conductive nanowires array: room-temperature electrochemical preparation for high-performance water oxidation electrocatalysis. Advanced Materials, 2018, 30(9): 1705366

[45]

Rani K K , Devasenathipathy R , Wang S F , Subramanian K S . Highly sensitive hydrazine sensor based on Co(OH)2 nanoflakes electrochemically deposited on MWCNTs. Electroanalysis, 2017, 29: 1–8

[46]

Zou K Y , Liu Y C , Jiang Y F , Yu C Y , Yue M L , Li Z X . Benzoate acid dependent lattice dimension of Co-MOFs and MOF-derived CoS2@CNTs with tunable pore diameters for supercapacitors. Inorganic Chemistry, 2017, 56(11): 6184–6196

[47]

Cao K Z , Jiao L F , Liu Y C , Liu H Q , Wang Y J , Yuan H T . Ultra-high capacity lithium-ion batteries with hierarchical CoO nanowire clusters as binder free electrodes. Advanced Functional Materials, 2015, 25(7): 1082–1089

[48]

Shen W , Zheng Y , Hu Y , Jin J , Hou Y C , Zhang N , An L , Xi P X , Yan C H . Rare-earth-modified NiS2 improves OH coverage for an industrial alkaline water electrolyzer. Journal of the American Chemical Society, 2024, 146(8): 5324–5332

[49]

Jin J R , Zhang X H , He T . Self-assembled CoS2 nanocrystal film as efficient counter electrode for dye-sensitized solar cells. Journal of Physical Chemistry B, 2014, 118: 24877–24883

[50]

Liu H J , Zhang S , Fan R Y , Liu B , Lv R Q , Chai Y M , Dong B , Activated M . S co-doping (M = Ni, Co, Mn) inverse spinel oxides with mixed mechanisms for water oxidation. Applied Catalysis B: Environment and Energy, 2024, 343: 123567

[51]

Zhou Y N , Dong Y W , Wu Y , Dong B , Liu H J , Zhai X J , Han G Q , Liu D P , Chai Y M . Nitrate induced precise atom substitution and vacancies for overall water splitting. Chemical Engineering Journal, 2023, 463: 142380

[52]

Shen W , Da P F , Guo L C , Xi P X , Yan C H . Rare earth interface structure materials: synthesis, applications, and mechanisms. Accounts of Materials Research, 2024, 5(6): 712–725

[53]

Shen W , Yin J , Jin J , Hu Y , Hou Y C , Xiao J T , Zhao Y Q , Xi P X . Progress in in situ research on dynamic surface reconstruction of electrocatalysts for oxygen evolution reaction. Advanced Energy and Sustainability Research, 2022, 3(8): 2200036

[54]

Zhang N , Hu Y , An L , Li Q Y , Yin J , Li J Y , Yang R , Lu M , Zhang S , Xi P X . . Surface activation and Ni-S stabilization in NiO/NiS2 for efficient oxygen evolution reaction. Angewandte Chemie International Edition, 2022, 61(35): e202207217

[55]

Faber M S , Dziedzic R , Lukowski M A , Kaiser N S , Ding Q , Jin S . High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro and nanostructures. Journal of the American Chemical Society, 2014, 136(28): 10053–10061

[56]

Wang P , Ren Y Y , Wang R T , Zhang P , Ding J , Li C X , Zhao D Y , Qian Z , Zhang Z W , Zhang L Y . . Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries. Nature Communications, 2020, 11(1): 1576

[57]

Wei X , Zheng D , Zhao M , Chen H Z , Fan X , Gao B , Gu L , Guo Y , Qin J B , Wei J . . Cross-linked polyphosphazene hollow nanosphere-derived N/P-doped porous carbon with single nonprecious metal atoms for the oxygen reduction reaction. Angewandte Chemie International Edition, 2020, 59(34): 14639–14646

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1232KB)

Supplementary files

FCE-24078-OF-ZX_suppl_1

3580

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/