
Reconstructing cobalt disulfide nanosheets through sulfur doping hexamethylenetetramine regulated β-Co(OH)2 for oxygen evolution reaction
Xiangtai Zhang, Lei Wu
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (3) : 21.
Reconstructing cobalt disulfide nanosheets through sulfur doping hexamethylenetetramine regulated β-Co(OH)2 for oxygen evolution reaction
Exploiting advanced transition metal based electrocatalysts is critical for the oxygen evolution reaction (OER) due to their high efficiency in an alkaline environment for water splitting. Herein, CoS2 nanosheets were synthesized through simple hydrothermal process and sulfurized layered β-Co(OH)2 nanosheets as a precursor. The regulation strategy of hexamethylenetetramine was employed to create layered single-crystal β-Co(OH)2 nanosheets. X-ray absorption fine structure indicates the crystal phase reconstructions occur on β-Co(OH)2 surface during the sulfidation reaction. The sulfurized β-Co(OH)2 nanosheets present an overpotential of only 297 mV to reach 10 mA·cm–2, a low Tafel slope of 71.7 mV·dec–1 and excellent stability for OER. The results clarified that the CoS2 nanosheets excellent OER performance is attributable to cobalt sulfide sheet structure and structural changes by sulfur dopants. The results of the sulfurized layered β-Co(OH)2 to produce CoS2 nanosheets indicate that this strategy may represents a potential replacement for oxygen evolution application, particularly for the large-scale production of water splitting catalysts.
sulfidation / β-cobalt hydroxide / cobalt disulfide / electrocatalysis / oxygen evolution reaction
[1] |
Huang Y , Zhu M S , Huang Y , Pei Z X , Li H F , Wang Z F , Xue Q , Zhi C Y . Multifunctional energy storage and conversion devices. Advanced Materials, 2016, 28(38): 8344–8364
CrossRef
Google scholar
|
[2] |
Fagiolari L , Sampò M , Lamberti A , Amici J , Francia C , Bodoardo S , Bella F . Integrated energy conversion and storage devices: interfacing solar cells, batteries and supercapacitors. Energy Storage Materials, 2022, 51: 400–434
CrossRef
Google scholar
|
[3] |
Venkatesan S V , Nandy A , Karan K , Larter S R , Thangadurai V . Recent advances in the unconventional design of electrochemical energy storage and conversion devices. Electrochemical Energy Reviews, 2022, 5(4): 16
CrossRef
Google scholar
|
[4] |
Li L , Wang P , Shao Q , Huang X . Metallic nanostructures with low dimensionality for electrochemical water splitting. Chemical Society Reviews, 2020, 49(10): 3072–3106
CrossRef
Google scholar
|
[5] |
Chu S , Cui Y , Liu N . The path towards sustainable energy. Nature Materials, 2016, 16(1): 16–22
CrossRef
Google scholar
|
[6] |
Ifkovits Z P , Evans J M , Meier M C , Papadantonakis K M , Lewis N S . Decoupled electrochemical water-splitting systems: a review and perspective. Energy & Environmental Science, 2021, 14(9): 4740–4759
CrossRef
Google scholar
|
[7] |
Zhang X Y , Xia L X , Zhao G Q , Zhang B X , Chen Y P , Chen J , Gao M X , Jiang Y Z , Liu Y F , Pan H G .
CrossRef
Google scholar
|
[8] |
Liao F , Yin K , Ji Y J , Zhu W J , Fan Z L , Li Y Y , Zhong J , Shao M W , Kang Z H , Shao Q . Iridium oxide nanoribbons with metastable monoclinic phase for highly efficient electrocatalytic oxygen evolution. Nature Communications, 2023, 14(1): 1248
CrossRef
Google scholar
|
[9] |
Guo T Q , Li L D , Wang Z C . Recent development and future perspectives of amorphous transition metal-based electrocatalysts for oxygen evolution reaction. Advanced Energy Materials, 2022, 12(24): 2200827
CrossRef
Google scholar
|
[10] |
Zhang X Y , Feng C , Dong B , Liu C G , Chai Y M . High-voltage-enabled stable cobalt species deposition on MnO2 for water oxidation in acid. Advanced Materials, 2023, 35(13): 2207066
CrossRef
Google scholar
|
[11] |
Yu N , Ma Y , Ren J K , Zhang Z J , Liu H J , Nan J , Li Y C , Chai Y M , Dong B . High negative voltage activating perovskite oxide with bi-vacancy synergistic regulation for water oxidation. Chemical Engineering Journal, 2023, 478: 147415
CrossRef
Google scholar
|
[12] |
Luan C L , Liu G L , Liu Y J , Yu L , Wang Y , Xiao Y , Qiao H Y , Dai X P , Zhang X . Structure effects of 2D materials on α-nickel hydroxide for oxygen evolution reaction. ACS Nano, 2018, 12(4): 3875–3885
CrossRef
Google scholar
|
[13] |
Xin S S , Tang Y , Jia B H , Zhang Z F , Li C P , Bao R , Li C J , Yi J H , Wang J S , Ma T Y . Coupling adsorbed evolution and lattice oxygen mechanism in Fe-Co(OH)2/Fe2O3 heterostructure for enhanced electrochemical water oxidation. Advanced Functional Materials, 2023, 33(45): 2305243
CrossRef
Google scholar
|
[14] |
Fan R Y , Zhou Y N , Li M X , Xie J Y , Yu W L , Chi J Q , Wang L , Yu J F , Chai Y M , Dong B . In situ construction of Fe(Co)OOH through ultra-fast electrochemical activation as real catalytic species for enhanced water oxidation. Chemical Engineering Journal, 2021, 426: 131943
CrossRef
Google scholar
|
[15] |
Wang L , Lin C , Zhang F X , Jin J . Phase transformation guided single-layer β-Co(OH)2 nanosheets for pseudocapacitive electrodes. ACS Nano, 2014, 8(4): 3724–3734
CrossRef
Google scholar
|
[16] |
Sun X , Zhu G L , Yang L , Zheng D C , Zhang J , Wen H , Feng H , Guan X , Wang H J , Yao Y D . Pyrolysis of a self-supported dodecyl sulfate anion-intercalated Co(OH)2 nanosheet with enlarged amorphous phase content towards enhanced activity for alkaline water oxidation. Chemical Communications (Cambridge), 2019, 55(75): 11211–11214
CrossRef
Google scholar
|
[17] |
McAteer D , Godwin I J , Ling Z , Harvey A , He L , Boland C S , Vega-Mayoral V , Szydłowska B , Rovetta A A , Backes C .
CrossRef
Google scholar
|
[18] |
Wang Y J , Li A S , Cheng C W . Ultrathin Co(OH)2 nanosheets@nitrogen-doped carbon nanoflake arrays as efficient air cathodes for rechargeable Zn-air batteries. Small, 2021, 17(35): 2101720
CrossRef
Google scholar
|
[19] |
Lu X Y , Xue H R , Gong H , Bai M J , Tang D M , Ma R Z , Sasaki T . 2D layered double hydroxide nanosheets and their derivatives toward efficient oxygen evolution reaction. Nano-Micro Letters, 2020, 12(1): 86
CrossRef
Google scholar
|
[20] |
Cui H T , Zhao Y A , Ren W Z , Wang M M , Liu Y . Large scale selective synthesis of α-Co(OH)2 and β-Co(OH)2 nanosheets through a fluoride ions mediated phase transformation process. Journal of Alloys and Compounds, 2013, 562: 33–37
CrossRef
Google scholar
|
[21] |
Zhao Q , Liu G Q , Zhang H W , Li Y , Cai W P . Strong SERS performances of ultrathin α-Co(OH)2 nanosheets to the toxic organophosphorus molecules and hydrogen bond-induced charge transfer mechanism. Advanced Materials Interfaces, 2017, 5(3): 1700709
CrossRef
Google scholar
|
[22] |
Cao B , Luo C H , Lao J , Chen H Q , Qi R J , Lin H C , Peng H . Facile synthesis of 3D transition-metal-doped α-Co(OH)2 nanomaterials in water-methanol mediated with ammonia for oxygen evolution reaction. ACS Omega, 2019, 4(15): 16612–16618
CrossRef
Google scholar
|
[23] |
Dileep N P , Vineesh T V , Sarma P V , Chalil M V , Prasad C S , Shaijumon M M . Electrochemically exfoliated β-Co(OH)2 nanostructures for enhanced oxygen evolution electrocatalysis. ACS Applied Energy Materials, 2020, 3(2): 1461–1467
CrossRef
Google scholar
|
[24] |
Lau G C , Sather N A , Sai H , Waring E M , Deiss-Yehiely E , Barreda L , Beeman E A , Palmer L C , Stupp S I . Oriented multiwalled organic-Co(OH)2 nanotubes for energy storage. Advanced Functional Materials, 2018, 28(3): 1702320
CrossRef
Google scholar
|
[25] |
Gaikar P S , Navale S T , Gaikwad S L , Al-Osta A , Jadhav V V , Arjunwadkar P R , Naushad M , Mane R S . Pseudocapacitive performance of solution-processed β-Co(OH)2 anode monitored through its surface morphology and area. Dalton Transactions, 2017, 46(10): 3393–3399
CrossRef
Google scholar
|
[26] |
Gao S , Sun Y F , Lei F C , Liang L , Liu J W , Bi W T , Pan B C , Xie Y . Ultrahigh energy density realized by a single-layer β-Co(OH)2 all-solid-state asymmetric supercapacitor. Angewandte Chemie International Edition, 2014, 53(47): 12789–12793
CrossRef
Google scholar
|
[27] |
Hu J L , Song J , Lan D H , Tian Q H . Ultrathin CoOOH/Co(OH)2 hybrid nanosheets for high-performance anodes of lithium-ion batteries. Journal of Alloys and Compounds, 2023, 935: 168076
CrossRef
Google scholar
|
[28] |
Zhang J Y , Liu Y C , Sun C Q , Xi P X , Peng S L , Gao D Q , Xue D S . Accelerated hydrogen evolution reaction in CoS2 by transition-metal doping. ACS Energy Letters, 2018, 3(4): 779–786
CrossRef
Google scholar
|
[29] |
Shen W , Zhu J M , Hu Y , Yin J , Zheng Y , Xi P X . Applications of rare earth promoted transition metal sulfides in electrocatalysis. Chinese Journal of Chemistry, 2023, 41(14): 1740–1752
CrossRef
Google scholar
|
[30] |
Pei L , Zhong J S , Li T Z , Bai W F , Wu S T , Yuan Y J , Chen Y F , Yu Z T , Yan S C , Zou Z G . CoS2@N-doped carbon core-shell nanorod array grown on Ni foam for enhanced electrocatalytic water oxidation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(14): 6795–6803
CrossRef
Google scholar
|
[31] |
Kang Y , He Y K , Pohl D , Rellinghaus B , Chen D , Schmidt M , Süß V , Mu Q G , Li F , Yang Q .
CrossRef
Google scholar
|
[32] |
Deng S Z , Cherian C T , Liu X L , Tan H R , Yeo L H , Yu X J , Rusydi A , Chowdari B V R , Fan H M , Sow C H . Ultrathin hexagonal hybrid nanosheets synthesized by graphene oxide-assisted exfoliation of β-Co(OH)2 mesocrystals. Chemistry, 2014, 20(39): 12444–12452
CrossRef
Google scholar
|
[33] |
Ren W C , Ma W , Umair M M , Zhang S F , Tang B T . CoO/Co-activated porous carbon cloth cathode for high performance lithium sulfur batteries. ChemSusChem, 2018, 11(16): 2695–2702
CrossRef
Google scholar
|
[34] |
Sun H M , Tian C Y , Fan G L , Qi J N , Liu Z T , Yan Z H , Cheng F Y , Chen J , Li C P , Du M . Boosting activity on Co4N porous nanosheet by coupling CeO2 for efficient electrochemical overall water splitting at high current densities. Advanced Functional Materials, 2020, 30(32): 1910596
CrossRef
Google scholar
|
[35] |
Peng S J , Li L L , Han X P , Sun W P , Srinivasan M , Mhaisalkar S G , Cheng F Y , Yan Q Y , Chen J , Ramakrishna S . Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angewandte Chemie, 2014, 126(46): 1–7
CrossRef
Google scholar
|
[36] |
Pan Y L , Cheng X D , Huang Y J , Gong L L , Zhang H P . CoS2 nanoparticles wrapping on flexible freestanding multichannel carbon nanofibers with high performance for Na-ion batteries. ACS Applied Materials & Interfaces, 2017, 9(41): 35820–35828
CrossRef
Google scholar
|
[37] |
Zhang X T , Xu J D , Wu L . Hexamethylenetetramine-derived pyridinic N abundant porous carbon-supported Co/Co-Nx nanoparticles as highly efficient oxygen reduction catalyst and zinc-air battery cathode. Materials Today Sustainability, 2022, 19: 100180
CrossRef
Google scholar
|
[38] |
Zhang X T , Hu S Z , Zhang M Y , Zhang X S . Glucose-hexamethylenetetramine-derived Co, N co-doped carbon nanoflowers with encapsulated Co@Co3O4 as efficient bifunctional oxygen electrocatalyst for zinc-air batteries. ChemNanoMat: Chemistry of Nanomaterials for Energy, Biology and More, 2023, 9(7): e202300221
CrossRef
Google scholar
|
[39] |
Borthakur P , Boruah P K , Das M R , Ibrahim M M , Altalhi T , El-Sheshtawy H S , Szunerits S , Boukherroub R , Amin M A . CoS2 nanoparticles supported on rGO, g-C3N4, BCN, MoS2, and WS2 two-dimensional nanosheets with excellent electrocatalytic performance for overall water splitting: electrochemical studies and DFT calculations. ACS Applied Energy Materials, 2021, 4(2): 1269–1285
CrossRef
Google scholar
|
[40] |
Liu Y W , Li J , Huang W T , Zhang Y , Wang M J , Gao X S , Wang X , Jin M L , Hou Z P , Zhou G F .
CrossRef
Google scholar
|
[41] |
Ulaganathan M , Maharjan M , Yan Q Y , Aravindan V , Madhavi S . β-Co(OH)2 nanosheets: a superior pseudocapacitive electrode for high energy supercapacitors. Chemistry, 2017, 12: 2127–2133
|
[42] |
Roca A G , Golosovsky I V , Winkler E , López-Ortega A , Estrader M , Zysler R D , Baró M D , Nogués J . Unravelling the elusive antiferromagnetic order in wurtzite and zinc blende CoO polymorph nanoparticles. Small, 2018, 14(15): 1703963
CrossRef
Google scholar
|
[43] |
Wang Z C , Xu W J , Chen X K , Peng Y H , Song Y Y , Lv C X , Liu H L , Sun J W , Yuan D , Li X Y .
CrossRef
Google scholar
|
[44] |
Wu D , Wei Y C , Ren X , Ji X Q , Liu Y W , Guo X D , Liu Z A , Asiri A M , Wei Q , Sun X P . Co(OH)2 nanoparticle-encapsulating conductive nanowires array: room-temperature electrochemical preparation for high-performance water oxidation electrocatalysis. Advanced Materials, 2018, 30(9): 1705366
CrossRef
Google scholar
|
[45] |
Rani K K , Devasenathipathy R , Wang S F , Subramanian K S . Highly sensitive hydrazine sensor based on Co(OH)2 nanoflakes electrochemically deposited on MWCNTs. Electroanalysis, 2017, 29: 1–8
|
[46] |
Zou K Y , Liu Y C , Jiang Y F , Yu C Y , Yue M L , Li Z X . Benzoate acid dependent lattice dimension of Co-MOFs and MOF-derived CoS2@CNTs with tunable pore diameters for supercapacitors. Inorganic Chemistry, 2017, 56(11): 6184–6196
CrossRef
Google scholar
|
[47] |
Cao K Z , Jiao L F , Liu Y C , Liu H Q , Wang Y J , Yuan H T . Ultra-high capacity lithium-ion batteries with hierarchical CoO nanowire clusters as binder free electrodes. Advanced Functional Materials, 2015, 25(7): 1082–1089
CrossRef
Google scholar
|
[48] |
Shen W , Zheng Y , Hu Y , Jin J , Hou Y C , Zhang N , An L , Xi P X , Yan C H . Rare-earth-modified NiS2 improves OH coverage for an industrial alkaline water electrolyzer. Journal of the American Chemical Society, 2024, 146(8): 5324–5332
CrossRef
Google scholar
|
[49] |
Jin J R , Zhang X H , He T . Self-assembled CoS2 nanocrystal film as efficient counter electrode for dye-sensitized solar cells. Journal of Physical Chemistry B, 2014, 118: 24877–24883
|
[50] |
Liu H J , Zhang S , Fan R Y , Liu B , Lv R Q , Chai Y M , Dong B , Activated M . S co-doping (M = Ni, Co, Mn) inverse spinel oxides with mixed mechanisms for water oxidation. Applied Catalysis B: Environment and Energy, 2024, 343: 123567
|
[51] |
Zhou Y N , Dong Y W , Wu Y , Dong B , Liu H J , Zhai X J , Han G Q , Liu D P , Chai Y M . Nitrate induced precise atom substitution and vacancies for overall water splitting. Chemical Engineering Journal, 2023, 463: 142380
CrossRef
Google scholar
|
[52] |
Shen W , Da P F , Guo L C , Xi P X , Yan C H . Rare earth interface structure materials: synthesis, applications, and mechanisms. Accounts of Materials Research, 2024, 5(6): 712–725
CrossRef
Google scholar
|
[53] |
Shen W , Yin J , Jin J , Hu Y , Hou Y C , Xiao J T , Zhao Y Q , Xi P X . Progress in in situ research on dynamic surface reconstruction of electrocatalysts for oxygen evolution reaction. Advanced Energy and Sustainability Research, 2022, 3(8): 2200036
CrossRef
Google scholar
|
[54] |
Zhang N , Hu Y , An L , Li Q Y , Yin J , Li J Y , Yang R , Lu M , Zhang S , Xi P X .
CrossRef
Google scholar
|
[55] |
Faber M S , Dziedzic R , Lukowski M A , Kaiser N S , Ding Q , Jin S . High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro and nanostructures. Journal of the American Chemical Society, 2014, 136(28): 10053–10061
CrossRef
Google scholar
|
[56] |
Wang P , Ren Y Y , Wang R T , Zhang P , Ding J , Li C X , Zhao D Y , Qian Z , Zhang Z W , Zhang L Y .
CrossRef
Google scholar
|
[57] |
Wei X , Zheng D , Zhao M , Chen H Z , Fan X , Gao B , Gu L , Guo Y , Qin J B , Wei J .
CrossRef
Google scholar
|
/
〈 |
|
〉 |