Reconstructing cobalt disulfide nanosheets through sulfur doping hexamethylenetetramine regulated β-Co(OH)2 for oxygen evolution reaction

Xiangtai Zhang, Lei Wu

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (3) : 21.

PDF(1232 KB)
PDF(1232 KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (3) : 21. DOI: 10.1007/s11705-025-2525-6
RESEARCH ARTICLE

Reconstructing cobalt disulfide nanosheets through sulfur doping hexamethylenetetramine regulated β-Co(OH)2 for oxygen evolution reaction

Author information +
History +

Abstract

Exploiting advanced transition metal based electrocatalysts is critical for the oxygen evolution reaction (OER) due to their high efficiency in an alkaline environment for water splitting. Herein, CoS2 nanosheets were synthesized through simple hydrothermal process and sulfurized layered β-Co(OH)2 nanosheets as a precursor. The regulation strategy of hexamethylenetetramine was employed to create layered single-crystal β-Co(OH)2 nanosheets. X-ray absorption fine structure indicates the crystal phase reconstructions occur on β-Co(OH)2 surface during the sulfidation reaction. The sulfurized β-Co(OH)2 nanosheets present an overpotential of only 297 mV to reach 10 mA·cm–2, a low Tafel slope of 71.7 mV·dec–1 and excellent stability for OER. The results clarified that the CoS2 nanosheets excellent OER performance is attributable to cobalt sulfide sheet structure and structural changes by sulfur dopants. The results of the sulfurized layered β-Co(OH)2 to produce CoS2 nanosheets indicate that this strategy may represents a potential replacement for oxygen evolution application, particularly for the large-scale production of water splitting catalysts.

Graphical abstract

Keywords

sulfidation / β-cobalt hydroxide / cobalt disulfide / electrocatalysis / oxygen evolution reaction

Cite this article

Download citation ▾
Xiangtai Zhang, Lei Wu. Reconstructing cobalt disulfide nanosheets through sulfur doping hexamethylenetetramine regulated β-Co(OH)2 for oxygen evolution reaction. Front. Chem. Sci. Eng., 2025, 19(3): 21 https://doi.org/10.1007/s11705-025-2525-6

References

[1]
Huang Y , Zhu M S , Huang Y , Pei Z X , Li H F , Wang Z F , Xue Q , Zhi C Y . Multifunctional energy storage and conversion devices. Advanced Materials, 2016, 28(38): 8344–8364
CrossRef Google scholar
[2]
Fagiolari L , Sampò M , Lamberti A , Amici J , Francia C , Bodoardo S , Bella F . Integrated energy conversion and storage devices: interfacing solar cells, batteries and supercapacitors. Energy Storage Materials, 2022, 51: 400–434
CrossRef Google scholar
[3]
Venkatesan S V , Nandy A , Karan K , Larter S R , Thangadurai V . Recent advances in the unconventional design of electrochemical energy storage and conversion devices. Electrochemical Energy Reviews, 2022, 5(4): 16
CrossRef Google scholar
[4]
Li L , Wang P , Shao Q , Huang X . Metallic nanostructures with low dimensionality for electrochemical water splitting. Chemical Society Reviews, 2020, 49(10): 3072–3106
CrossRef Google scholar
[5]
Chu S , Cui Y , Liu N . The path towards sustainable energy. Nature Materials, 2016, 16(1): 16–22
CrossRef Google scholar
[6]
Ifkovits Z P , Evans J M , Meier M C , Papadantonakis K M , Lewis N S . Decoupled electrochemical water-splitting systems: a review and perspective. Energy & Environmental Science, 2021, 14(9): 4740–4759
CrossRef Google scholar
[7]
Zhang X Y , Xia L X , Zhao G Q , Zhang B X , Chen Y P , Chen J , Gao M X , Jiang Y Z , Liu Y F , Pan H G . . Fast and durable alkaline hydrogen oxidation reaction at the electron-deficient ruthenium-ruthenium oxide interface. Advanced Materials, 2023, 35(9): 2208821
CrossRef Google scholar
[8]
Liao F , Yin K , Ji Y J , Zhu W J , Fan Z L , Li Y Y , Zhong J , Shao M W , Kang Z H , Shao Q . Iridium oxide nanoribbons with metastable monoclinic phase for highly efficient electrocatalytic oxygen evolution. Nature Communications, 2023, 14(1): 1248
CrossRef Google scholar
[9]
Guo T Q , Li L D , Wang Z C . Recent development and future perspectives of amorphous transition metal-based electrocatalysts for oxygen evolution reaction. Advanced Energy Materials, 2022, 12(24): 2200827
CrossRef Google scholar
[10]
Zhang X Y , Feng C , Dong B , Liu C G , Chai Y M . High-voltage-enabled stable cobalt species deposition on MnO2 for water oxidation in acid. Advanced Materials, 2023, 35(13): 2207066
CrossRef Google scholar
[11]
Yu N , Ma Y , Ren J K , Zhang Z J , Liu H J , Nan J , Li Y C , Chai Y M , Dong B . High negative voltage activating perovskite oxide with bi-vacancy synergistic regulation for water oxidation. Chemical Engineering Journal, 2023, 478: 147415
CrossRef Google scholar
[12]
Luan C L , Liu G L , Liu Y J , Yu L , Wang Y , Xiao Y , Qiao H Y , Dai X P , Zhang X . Structure effects of 2D materials on α-nickel hydroxide for oxygen evolution reaction. ACS Nano, 2018, 12(4): 3875–3885
CrossRef Google scholar
[13]
Xin S S , Tang Y , Jia B H , Zhang Z F , Li C P , Bao R , Li C J , Yi J H , Wang J S , Ma T Y . Coupling adsorbed evolution and lattice oxygen mechanism in Fe-Co(OH)2/Fe2O3 heterostructure for enhanced electrochemical water oxidation. Advanced Functional Materials, 2023, 33(45): 2305243
CrossRef Google scholar
[14]
Fan R Y , Zhou Y N , Li M X , Xie J Y , Yu W L , Chi J Q , Wang L , Yu J F , Chai Y M , Dong B . In situ construction of Fe(Co)OOH through ultra-fast electrochemical activation as real catalytic species for enhanced water oxidation. Chemical Engineering Journal, 2021, 426: 131943
CrossRef Google scholar
[15]
Wang L , Lin C , Zhang F X , Jin J . Phase transformation guided single-layer β-Co(OH)2 nanosheets for pseudocapacitive electrodes. ACS Nano, 2014, 8(4): 3724–3734
CrossRef Google scholar
[16]
Sun X , Zhu G L , Yang L , Zheng D C , Zhang J , Wen H , Feng H , Guan X , Wang H J , Yao Y D . Pyrolysis of a self-supported dodecyl sulfate anion-intercalated Co(OH)2 nanosheet with enlarged amorphous phase content towards enhanced activity for alkaline water oxidation. Chemical Communications (Cambridge), 2019, 55(75): 11211–11214
CrossRef Google scholar
[17]
McAteer D , Godwin I J , Ling Z , Harvey A , He L , Boland C S , Vega-Mayoral V , Szydłowska B , Rovetta A A , Backes C . . Liquid exfoliated Co(OH)2 nanosheets as low-cost, yet high-performance, catalysts for the oxygen evolution reaction. Advanced Energy Materials, 2018, 8(15): 1702965
CrossRef Google scholar
[18]
Wang Y J , Li A S , Cheng C W . Ultrathin Co(OH)2 nanosheets@nitrogen-doped carbon nanoflake arrays as efficient air cathodes for rechargeable Zn-air batteries. Small, 2021, 17(35): 2101720
CrossRef Google scholar
[19]
Lu X Y , Xue H R , Gong H , Bai M J , Tang D M , Ma R Z , Sasaki T . 2D layered double hydroxide nanosheets and their derivatives toward efficient oxygen evolution reaction. Nano-Micro Letters, 2020, 12(1): 86
CrossRef Google scholar
[20]
Cui H T , Zhao Y A , Ren W Z , Wang M M , Liu Y . Large scale selective synthesis of α-Co(OH)2 and β-Co(OH)2 nanosheets through a fluoride ions mediated phase transformation process. Journal of Alloys and Compounds, 2013, 562: 33–37
CrossRef Google scholar
[21]
Zhao Q , Liu G Q , Zhang H W , Li Y , Cai W P . Strong SERS performances of ultrathin α-Co(OH)2 nanosheets to the toxic organophosphorus molecules and hydrogen bond-induced charge transfer mechanism. Advanced Materials Interfaces, 2017, 5(3): 1700709
CrossRef Google scholar
[22]
Cao B , Luo C H , Lao J , Chen H Q , Qi R J , Lin H C , Peng H . Facile synthesis of 3D transition-metal-doped α-Co(OH)2 nanomaterials in water-methanol mediated with ammonia for oxygen evolution reaction. ACS Omega, 2019, 4(15): 16612–16618
CrossRef Google scholar
[23]
Dileep N P , Vineesh T V , Sarma P V , Chalil M V , Prasad C S , Shaijumon M M . Electrochemically exfoliated β-Co(OH)2 nanostructures for enhanced oxygen evolution electrocatalysis. ACS Applied Energy Materials, 2020, 3(2): 1461–1467
CrossRef Google scholar
[24]
Lau G C , Sather N A , Sai H , Waring E M , Deiss-Yehiely E , Barreda L , Beeman E A , Palmer L C , Stupp S I . Oriented multiwalled organic-Co(OH)2 nanotubes for energy storage. Advanced Functional Materials, 2018, 28(3): 1702320
CrossRef Google scholar
[25]
Gaikar P S , Navale S T , Gaikwad S L , Al-Osta A , Jadhav V V , Arjunwadkar P R , Naushad M , Mane R S . Pseudocapacitive performance of solution-processed β-Co(OH)2 anode monitored through its surface morphology and area. Dalton Transactions, 2017, 46(10): 3393–3399
CrossRef Google scholar
[26]
Gao S , Sun Y F , Lei F C , Liang L , Liu J W , Bi W T , Pan B C , Xie Y . Ultrahigh energy density realized by a single-layer β-Co(OH)2 all-solid-state asymmetric supercapacitor. Angewandte Chemie International Edition, 2014, 53(47): 12789–12793
CrossRef Google scholar
[27]
Hu J L , Song J , Lan D H , Tian Q H . Ultrathin CoOOH/Co(OH)2 hybrid nanosheets for high-performance anodes of lithium-ion batteries. Journal of Alloys and Compounds, 2023, 935: 168076
CrossRef Google scholar
[28]
Zhang J Y , Liu Y C , Sun C Q , Xi P X , Peng S L , Gao D Q , Xue D S . Accelerated hydrogen evolution reaction in CoS2 by transition-metal doping. ACS Energy Letters, 2018, 3(4): 779–786
CrossRef Google scholar
[29]
Shen W , Zhu J M , Hu Y , Yin J , Zheng Y , Xi P X . Applications of rare earth promoted transition metal sulfides in electrocatalysis. Chinese Journal of Chemistry, 2023, 41(14): 1740–1752
CrossRef Google scholar
[30]
Pei L , Zhong J S , Li T Z , Bai W F , Wu S T , Yuan Y J , Chen Y F , Yu Z T , Yan S C , Zou Z G . CoS2@N-doped carbon core-shell nanorod array grown on Ni foam for enhanced electrocatalytic water oxidation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(14): 6795–6803
CrossRef Google scholar
[31]
Kang Y , He Y K , Pohl D , Rellinghaus B , Chen D , Schmidt M , Süß V , Mu Q G , Li F , Yang Q . . Identification of interface structure for a topological CoS2 single crystal in oxygen evolution reaction with high intrinsic reactivity. ACS Applied Materials & Interfaces, 2022, 14(17): 19324–19331
CrossRef Google scholar
[32]
Deng S Z , Cherian C T , Liu X L , Tan H R , Yeo L H , Yu X J , Rusydi A , Chowdari B V R , Fan H M , Sow C H . Ultrathin hexagonal hybrid nanosheets synthesized by graphene oxide-assisted exfoliation of β-Co(OH)2 mesocrystals. Chemistry, 2014, 20(39): 12444–12452
CrossRef Google scholar
[33]
Ren W C , Ma W , Umair M M , Zhang S F , Tang B T . CoO/Co-activated porous carbon cloth cathode for high performance lithium sulfur batteries. ChemSusChem, 2018, 11(16): 2695–2702
CrossRef Google scholar
[34]
Sun H M , Tian C Y , Fan G L , Qi J N , Liu Z T , Yan Z H , Cheng F Y , Chen J , Li C P , Du M . Boosting activity on Co4N porous nanosheet by coupling CeO2 for efficient electrochemical overall water splitting at high current densities. Advanced Functional Materials, 2020, 30(32): 1910596
CrossRef Google scholar
[35]
Peng S J , Li L L , Han X P , Sun W P , Srinivasan M , Mhaisalkar S G , Cheng F Y , Yan Q Y , Chen J , Ramakrishna S . Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angewandte Chemie, 2014, 126(46): 1–7
CrossRef Google scholar
[36]
Pan Y L , Cheng X D , Huang Y J , Gong L L , Zhang H P . CoS2 nanoparticles wrapping on flexible freestanding multichannel carbon nanofibers with high performance for Na-ion batteries. ACS Applied Materials & Interfaces, 2017, 9(41): 35820–35828
CrossRef Google scholar
[37]
Zhang X T , Xu J D , Wu L . Hexamethylenetetramine-derived pyridinic N abundant porous carbon-supported Co/Co-Nx nanoparticles as highly efficient oxygen reduction catalyst and zinc-air battery cathode. Materials Today Sustainability, 2022, 19: 100180
CrossRef Google scholar
[38]
Zhang X T , Hu S Z , Zhang M Y , Zhang X S . Glucose-hexamethylenetetramine-derived Co, N co-doped carbon nanoflowers with encapsulated Co@Co3O4 as efficient bifunctional oxygen electrocatalyst for zinc-air batteries. ChemNanoMat: Chemistry of Nanomaterials for Energy, Biology and More, 2023, 9(7): e202300221
CrossRef Google scholar
[39]
Borthakur P , Boruah P K , Das M R , Ibrahim M M , Altalhi T , El-Sheshtawy H S , Szunerits S , Boukherroub R , Amin M A . CoS2 nanoparticles supported on rGO, g-C3N4, BCN, MoS2, and WS2 two-dimensional nanosheets with excellent electrocatalytic performance for overall water splitting: electrochemical studies and DFT calculations. ACS Applied Energy Materials, 2021, 4(2): 1269–1285
CrossRef Google scholar
[40]
Liu Y W , Li J , Huang W T , Zhang Y , Wang M J , Gao X S , Wang X , Jin M L , Hou Z P , Zhou G F . . Surface-induced 2D/1D hetero-structured growth of ReS2/CoS2 for high performance electro-catalyst. ACS Applied Materials & Interfaces, 2020, 12(30): 33586–33594
CrossRef Google scholar
[41]
Ulaganathan M , Maharjan M , Yan Q Y , Aravindan V , Madhavi S . β-Co(OH)2 nanosheets: a superior pseudocapacitive electrode for high energy supercapacitors. Chemistry, 2017, 12: 2127–2133
[42]
Roca A G , Golosovsky I V , Winkler E , López-Ortega A , Estrader M , Zysler R D , Baró M D , Nogués J . Unravelling the elusive antiferromagnetic order in wurtzite and zinc blende CoO polymorph nanoparticles. Small, 2018, 14(15): 1703963
CrossRef Google scholar
[43]
Wang Z C , Xu W J , Chen X K , Peng Y H , Song Y Y , Lv C X , Liu H L , Sun J W , Yuan D , Li X Y . . Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis. Advanced Functional Materials, 2019, 29(33): 1902875
CrossRef Google scholar
[44]
Wu D , Wei Y C , Ren X , Ji X Q , Liu Y W , Guo X D , Liu Z A , Asiri A M , Wei Q , Sun X P . Co(OH)2 nanoparticle-encapsulating conductive nanowires array: room-temperature electrochemical preparation for high-performance water oxidation electrocatalysis. Advanced Materials, 2018, 30(9): 1705366
CrossRef Google scholar
[45]
Rani K K , Devasenathipathy R , Wang S F , Subramanian K S . Highly sensitive hydrazine sensor based on Co(OH)2 nanoflakes electrochemically deposited on MWCNTs. Electroanalysis, 2017, 29: 1–8
[46]
Zou K Y , Liu Y C , Jiang Y F , Yu C Y , Yue M L , Li Z X . Benzoate acid dependent lattice dimension of Co-MOFs and MOF-derived CoS2@CNTs with tunable pore diameters for supercapacitors. Inorganic Chemistry, 2017, 56(11): 6184–6196
CrossRef Google scholar
[47]
Cao K Z , Jiao L F , Liu Y C , Liu H Q , Wang Y J , Yuan H T . Ultra-high capacity lithium-ion batteries with hierarchical CoO nanowire clusters as binder free electrodes. Advanced Functional Materials, 2015, 25(7): 1082–1089
CrossRef Google scholar
[48]
Shen W , Zheng Y , Hu Y , Jin J , Hou Y C , Zhang N , An L , Xi P X , Yan C H . Rare-earth-modified NiS2 improves OH coverage for an industrial alkaline water electrolyzer. Journal of the American Chemical Society, 2024, 146(8): 5324–5332
CrossRef Google scholar
[49]
Jin J R , Zhang X H , He T . Self-assembled CoS2 nanocrystal film as efficient counter electrode for dye-sensitized solar cells. Journal of Physical Chemistry B, 2014, 118: 24877–24883
[50]
Liu H J , Zhang S , Fan R Y , Liu B , Lv R Q , Chai Y M , Dong B , Activated M . S co-doping (M = Ni, Co, Mn) inverse spinel oxides with mixed mechanisms for water oxidation. Applied Catalysis B: Environment and Energy, 2024, 343: 123567
[51]
Zhou Y N , Dong Y W , Wu Y , Dong B , Liu H J , Zhai X J , Han G Q , Liu D P , Chai Y M . Nitrate induced precise atom substitution and vacancies for overall water splitting. Chemical Engineering Journal, 2023, 463: 142380
CrossRef Google scholar
[52]
Shen W , Da P F , Guo L C , Xi P X , Yan C H . Rare earth interface structure materials: synthesis, applications, and mechanisms. Accounts of Materials Research, 2024, 5(6): 712–725
CrossRef Google scholar
[53]
Shen W , Yin J , Jin J , Hu Y , Hou Y C , Xiao J T , Zhao Y Q , Xi P X . Progress in in situ research on dynamic surface reconstruction of electrocatalysts for oxygen evolution reaction. Advanced Energy and Sustainability Research, 2022, 3(8): 2200036
CrossRef Google scholar
[54]
Zhang N , Hu Y , An L , Li Q Y , Yin J , Li J Y , Yang R , Lu M , Zhang S , Xi P X . . Surface activation and Ni-S stabilization in NiO/NiS2 for efficient oxygen evolution reaction. Angewandte Chemie International Edition, 2022, 61(35): e202207217
CrossRef Google scholar
[55]
Faber M S , Dziedzic R , Lukowski M A , Kaiser N S , Ding Q , Jin S . High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro and nanostructures. Journal of the American Chemical Society, 2014, 136(28): 10053–10061
CrossRef Google scholar
[56]
Wang P , Ren Y Y , Wang R T , Zhang P , Ding J , Li C X , Zhao D Y , Qian Z , Zhang Z W , Zhang L Y . . Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries. Nature Communications, 2020, 11(1): 1576
CrossRef Google scholar
[57]
Wei X , Zheng D , Zhao M , Chen H Z , Fan X , Gao B , Gu L , Guo Y , Qin J B , Wei J . . Cross-linked polyphosphazene hollow nanosphere-derived N/P-doped porous carbon with single nonprecious metal atoms for the oxygen reduction reaction. Angewandte Chemie International Edition, 2020, 59(34): 14639–14646
CrossRef Google scholar

Acknowledgements

This work was financially supported by the Youth Fund of Qinghai University (Grant No. 2019-QGY-9).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-025-2525-6 and is accessible for authorized users.

Competing interests

The authors declare that they have no competing interests.

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(1232 KB)

Accesses

Citations

Detail

Sections
Recommended

/