Developing indium-oxide based catalysts for efficient hydrogenation of carbon dioxide to methanol: a mini-review

Yuxin Wang, Na Yang, Zeshan Wang, Dong Tian, Hua Wang, Kongzhai Li

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (3) : 17.

PDF(2833 KB)
PDF(2833 KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (3) : 17. DOI: 10.1007/s11705-025-2521-x
REVIEW ARTICLE

Developing indium-oxide based catalysts for efficient hydrogenation of carbon dioxide to methanol: a mini-review

Author information +
History +

Abstract

While the use of fossil fuels has contributed to the progress and development of human society, the huge amount of CO2 is emitted, which has led to the deterioration of the ecological environment. Converting CO2 into valuable methanol is a key strategy for its utilization. In2O3 catalyst has attracted much attention due to its high selectivity and performance in methanol production. This paper reviews the structural characteristics, catalytic sites and pathways of In2O3, and the latest research progress of In2O3-based catalysts in CO2 hydrogenation to methanol. Moreover, the review outlines various strategies to enhance In-based catalysts, including: (I) loading metal particles to promote H2 dissociation, (II) formation of metal-In2O3 interfaces to enhance CO2 adsorption, (III) bimetallic catalysts to improve catalytic kinetics, (IV) combining In2O3 with metal oxides to stabilize surface oxygen vacancies, (V) constructing solid-solution catalysts, and (VI) combining with other catalysts to construct composite catalysts, etc. In2O3-based catalysts have broad application prospects in the field of CO2 hydrogenation to methanol. Through various structural and principle innovations, it is expected to improve the comprehensive performance and provide theoretical guidance for catalyst design.

Graphical abstract

Keywords

indium oxide / hydrogenation / carbon dioxide / methanol / catalysis

Cite this article

Download citation ▾
Yuxin Wang, Na Yang, Zeshan Wang, Dong Tian, Hua Wang, Kongzhai Li. Developing indium-oxide based catalysts for efficient hydrogenation of carbon dioxide to methanol: a mini-review. Front. Chem. Sci. Eng., 2025, 19(3): 17 https://doi.org/10.1007/s11705-025-2521-x

References

[1]
Stallinga P . Comprehensive analytical study of the greenhouse effect of the atmosphere. Atmospheric and Climate Science, 2019, 10(1): 40–80
CrossRef Google scholar
[2]
Sun K , Fan Z , Ye J , Yan J , Ge Q , Li Y , He W , Yang W , Liu C J . Hydrogenation of CO2 to methanol over In2O3 catalyst. Journal of CO2 Utilization, 2015, 12: 1–6
[3]
Velty A , Corma A . Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO2 to chemicals and fuels. Chemical Society Reviews, 2023, 52(5): 1773–1946
CrossRef Google scholar
[4]
Xu L , Chen X , Deng C , Hu K , Gao R , Zhang L , Wang L , Zhang C . Hydrogenation of carbon dioxide to methanol over non-noble catalysts: a state-of-the-art review. Atmosphere (Basel), 2023, 14(8): 1208
CrossRef Google scholar
[5]
Traynor A J , Jensen R J . Direct solar reduction of CO2 to fuel: first prototype results. Industrial & Engineering Chemistry Research, 2002, 41(8): 1935–1939
CrossRef Google scholar
[6]
Temvuttirojn C , Poo-Arporn Y , Chanlek N , Cheng C K , Chong C C , Limtrakul J , Witoon T . Role of calcination temperatures of ZrO2 support on methanol synthesis from CO2 hydrogenation at high reaction temperatures over ZnOx/ZrO2 catalysts. Industrial & Engineering Chemistry Research, 2020, 59(13): 5525–5535
CrossRef Google scholar
[7]
Jiang X , Nie X , Guo X , Song C , Chen J G . Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chemical Reviews, 2020, 120(15): 7984–8034
CrossRef Google scholar
[8]
Behrens M , Studt F , Kasatkin I , Kühl S , Hävecker M , Abild-Pedersen F , Zander S , Girgsdies F , Kurr P , Kniep B L . . The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science, 2012, 336(6083): 893–897
CrossRef Google scholar
[9]
Kowalec I , Kabalan L , Catlow C R A , Logsdail A J . A computational study of direct CO2 hydrogenation to methanol on Pd surfaces. Physical Chemistry Chemical Physics, 2022, 24(16): 9360–9373
CrossRef Google scholar
[10]
Anderson J A , López-Granados M , Fernández-García M . Role of the support in syngas conversion over Pd/Cu-KL zeolite catalysts. Journal of Catalysis, 1998, 176(1): 235–245
CrossRef Google scholar
[11]
Melián-Cabrera I , Granados M L , Terreros P , Fierro J . CO2 hydrogenation over Pd-modified methanol synthesis catalysts. Catalysis Today, 1998, 45(1-4): 251–256
CrossRef Google scholar
[12]
Yang D , Lu H , Zeng G , Chen Z X . CO2 hydrogenation to methanol and ethanol on In2O3-based single-atom catalysts and a new scaling relation. Journal of Physical Chemistry C, 2023, 10(45): 1021
CrossRef Google scholar
[13]
Kumari N , Sinha N , Haider M A , Basu S . CO2 reduction to methanol on CeO2(110) surface: a density functional theory study. Electrochimica Acta, 2015, 177: 21–29
CrossRef Google scholar
[14]
Zhao B , Pan Y X , Liu C J . The promotion effect of CeO2 on CO2 adsorption and hydrogenation over Ga2O3. Catalysis Today, 2012, 194(1): 60–64
CrossRef Google scholar
[15]
Chuasiripattana K , Warschkow O , Delley B , Stampfl C . Reaction intermediates of methanol synthesis and the water-gas-shift reaction on the ZnO(0001) surface. Surface Science, 2010, 604(19–20): 1742–1751
CrossRef Google scholar
[16]
Kattel S , Yan B , Yang Y , Chen J G , Liu P . Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper. Journal of the American Chemical Society, 2016, 138(38): 12440–12450
CrossRef Google scholar
[17]
Martin O , Martín A J , Mondelli C , Mitchell S , Segawa T F , Hauert R , Drouilly C , Curulla-Ferré D , Pérez-Ramírez J . Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angewandte Chemie, 2016, 128(21): 6369–6373
CrossRef Google scholar
[18]
Ye J , Liu C , Mei D , Ge Q . Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3 (110): a DFT study. ACS Catalysis, 2013, 3(6): 1296–1306
CrossRef Google scholar
[19]
Gong F , Liu H , Liu C , Gong Y , Zhang Y , Meng E , Li F . 3D hierarchical In2O3 nanoarchitectures consisting of nanocuboids and nanosheets for chemical sensors with enhanced performances. Materials Letters, 2016, 163: 236–239
CrossRef Google scholar
[20]
Djerdj I , Haensch A , Koziej D , Pokhrel S , Barsan N , Weimar U , Niederberger M . Neodymium dioxide carbonate as a sensing layer for chemoresistive CO2 sensing. Chemistry of Materials, 2009, 21(22): 5375–5381
CrossRef Google scholar
[21]
Zhang F , Li X , Zhao Q , Zhang D . Rational design of ZnFe2O4/In2O3 nanohetero-structures: efficient photocatalyst for gaseous 1,2-dichlorobenzene degradation and mechanistic insight. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4554–4562
CrossRef Google scholar
[22]
Xu H , Wang Y , Dong X , Zheng N , Ma H , Zhang X . Fabrication of In2O3/In2S3 microsphere heterostructures for efficient and stable photocatalytic nitrogen fixation. Applied Catalysis B: Environmental, 2019, 257: 117932
CrossRef Google scholar
[23]
Wang L , Dong Y , Yan T , Hu Z , Ali F M , Meira D M , Duchesne P N , Loh J Y Y , Qiu C , Storey E E . . Black indium oxide a photothermal CO2 hydrogenation catalyst. Nature Communications, 2020, 11(1): 2432
CrossRef Google scholar
[24]
Zhu X , Yang J , Zhu X , Yuan J , Zhou M , She X , Yu Q , Song Y , She Y , Hua Y . . Exploring deep effects of atomic vacancies on activating CO2 photoreduction via rationally designing indium oxide photocatalysts. Chemical Engineering Journal, 2021, 422: 129888
CrossRef Google scholar
[25]
Lin S , Ye X . First-principle insights into the catalytic role of indium oxide in methanol steam reforming. Chinese Journal of Catalysis, 2013, 34(10): 1855–1860
CrossRef Google scholar
[26]
Liu D , Men Y , Wang J , Kolb G , Liu X , Wang Y , Sun Q . Highly active and durable Pt/In2O3/Al2O3 catalysts in methanol steam reforming. International Journal of Hydrogen Energy, 2016, 41(47): 21990–21999
CrossRef Google scholar
[27]
Neumann M , Teschner D , Knop-Gericke A , Reschetilowski W , Armbrüster M . Controlled synthesis and catalytic properties of supported In-Pd intermetallic compounds. Journal of Catalysis, 2016, 340: 49–59
CrossRef Google scholar
[28]
Liu X , Men Y , Wang J , He R , Wang Y . Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming. Journal of Power Sources, 2017, 364: 341–350
CrossRef Google scholar
[29]
Ma H , Yu L , Yuan X , Li Y , Li C , Yin M , Fan X . Room temperature photoelectric NO2 gas sensor based on direct growth of walnut-like In2O3 nanostructures. Journal of Alloys and Compounds, 2019, 782: 1121–1126
CrossRef Google scholar
[30]
Francioso L , Forleo A , Capone S , Epifani M , Taurino A M , Siciliano P . Nanostructured In2O3-SnO2 sol-gel thin film as material for NO2 detection. Sensors and Actuators B: Chemical, 2006, 114(2): 646–655
CrossRef Google scholar
[31]
Ahmed M , Karimov K S , Moiz S . Photoelectric behavior of n-GaAs/orange dye, vinyl-ethynyl-trimethyl-piperidole/conductive glass sensor. Thin Solid Films, 2008, 516(21): 7822–7827
CrossRef Google scholar
[32]
Lee J , Lee W , Park E , Park T , Nah Y C , Han S H , Yi W . The electric field enhancements by single-walled carbon nanotubes in In2S3/In2O3 photoelectrochemical solar cells. Applied Physics Letters, 2010, 96(17): 173506
CrossRef Google scholar
[33]
Eisner F , Seitkhan A , Han Y , Khim D , Yengel E , Kirmani A , Xu J , García de Arquer F P , Sargent E H , Amassian A . . Solution-processed In2O3/ZnO heterojunction electron transport layers for efficient organic bulk heterojunction and inorganic colloidal quantum-dot solar cells. Solar RRL, 2018, 2(7): 1800076
CrossRef Google scholar
[34]
Pooja P , Chinnamuthu P . Robust ultraviolet photodetection by tailored polycry-stalline In2O3 nanowire synthesized using glancing angle deposition. IEEE Sensors Journal, 2021, 21(12): 13192–13199
CrossRef Google scholar
[35]
Liu D , Lei W W , Zou B , Yu S D , Hao J , Wang K , Zou G T . High-pressure X-ray diffraction and Raman spectra study of indium oxide. Journal of Applied Physics, 2008, 104(8): 083506
CrossRef Google scholar
[36]
Yang B , Li L , Jia Z , Liu X , Zhang C , Guo L . Comparative study of CO2 hydrogenation to methanol on cubic bixbyite-type and rhombohedral corundum-type indium oxide. Chinese Chemical Letters, 2020, 31(10): 2627–2633
CrossRef Google scholar
[37]
Lin D , Shen Q , Tang Y , Zhang M , Li W , Zhuo Q , Chen Q . In2O3 crystal phase variation on In2O3/Co3O4 to boost CO2 hydrogenation to methanol. Molecular Catalysis, 2024, 557: 113998
CrossRef Google scholar
[38]
Tian H , Jiao C , Zha F , Guo X , Tang X , Chang Y , Chen H . Tandem catalysts of different crystalline In2O3/sheet HZSM-5 zeolite for CO2 hydrogenation to aromatics. Journal of Colloid and Interface Science, 2024, 653: 1225–1235
CrossRef Google scholar
[39]
Gericke S M , Kauppinen M M , Wagner M , Riva M , Franceschi G , Posada-Borbón A , Lundgren E . Effect of different In2O3 (111) surface terminations on CO2 adsorption. ACS Applied Materials & Interfaces, 2023, 15(38): 45367–45377
CrossRef Google scholar
[40]
Wang J , Liu C Y , Senftle T P , Zhu J , Zhang G , Guo X , Song C . Variation in the In2O3 crystal phase alters catalytic performance toward the reverse water gas shift reaction. ACS Catalysis, 2019, 10(5): 3264–3273
CrossRef Google scholar
[41]
Li Z , Men Y , Liu S , Wang J , Qin K , Tian D , An W . Boosting CO2 hydrogenation efficiency for methanol synthesis over Pd/In2O3/ZrO2 catalysts by crystalline phase effect. Applied Surface Science, 2022, 603: 154420
CrossRef Google scholar
[42]
Qin B , Zhou Z , Li S . Reaction pathways and the role of the carbonates during CO2 hydrogenation over hexagonal In2O3 catalysts. Applied Surface Science, 2021, 542: 148591
CrossRef Google scholar
[43]
Qin B , Li S . First principles investigation of dissociative adsorption of H2 during CO2 hydrogenation over cubic and hexagonal In2O3 catalysts. Physical Chemistry Chemical Physics, 2020, 22(6): 3390–3399
CrossRef Google scholar
[44]
Walsh A , Catlow C R A . Structure, stability and work functions of the low index surfaces of pure indium oxide and Sn-doped indium oxide (ITO) from density functional theory. Journal of Materials Chemistry, 2010, 20(46): 10438–10444
CrossRef Google scholar
[45]
Posada-Borbon A , Grönbeck H . Hydrogen adsorption on In2O3 (111) and In2O3 (110). Physical Chemistry Chemical Physics, 2020, 22(28): 16193–16202
CrossRef Google scholar
[46]
Rui N , Wang Z , Sun K , Ye J , Ge Q , Liu C J . CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy. Applied Catalysis B: Environmental, 2017, 218: 488–497
CrossRef Google scholar
[47]
Zhang M , Wang W , Chen Y . Insight of DFT and ab initio atomistic thermodynamics on the surface stability and morphology of In2O3. Applied Surface Science, 2018, 434: 1344–1352
CrossRef Google scholar
[48]
Wang J , Sun K , Jia X , Liu C J . CO2 hydrogenation to methanol over Rh/In2O3 catalyst. Catalysis Today, 2021, 365: 341–347
CrossRef Google scholar
[49]
Ye J , Liu C , Ge Q . DFT study of CO2 adsorption and hydrogenation on the In2O3 surface. Journal of Physical Chemistry C, 2012, 116(14): 7817–7825
CrossRef Google scholar
[50]
Frei M S , Mondelli C , García-Muelas R , Kley K S , Puértolas B , López N , Pérez-Ramírez J . Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation. Nature Communications, 2019, 10(1): 3377
CrossRef Google scholar
[51]
Jiang X , Nie X , Gong Y , Moran C M , Wang J , Zhu J , Chang H , Guo X , Walton K S , Song C . A combined experimental and DFT study of H2O effect on In2O3/ZrO2 catalyst for CO2 hydrogenation to methanol. Journal of Catalysis, 2020, 383: 283–296
CrossRef Google scholar
[52]
Cannizzaro F , Kurstjens S , van den Berg T , Hensen E J M , Filot I A W . A computational study of CO2 hydrogenation on single atoms of Pt, Pd, Ni and Rh on In2O3 (111). Catalysis Science & Technology, 2023, 13(16): 4701–4715
CrossRef Google scholar
[53]
Wang Y , Gao W , Li K , Zheng Y , Xie Z , Na W , Chen J G , Wang H . Strong evidence of the role of H2O in affecting methanol selectivity from CO2 hydrogenation over Cu-ZnO-ZrO2. Chem, 2020, 6(2): 419–430
CrossRef Google scholar
[54]
Wang Y , Kattel S , Gao W , Li K , Liu P , Chen J G , Wang H . Exploring the ternary interactions in Cu-ZnO-ZrO2 catalysts for efficient CO2 hydrogenation to methanol. Nature Communications, 2019, 10(1): 1166
CrossRef Google scholar
[55]
Qiao S , Zhang G , Tian D , Xu W , Jiang W , Cao Y , Qian J , Zhang J , He Q , Song L . Stepped copper sites coupling voltage-induced surfactant assembly to achieve efficient CO2 electroreduction to formate. Energy & Environmental Science, 2024, 17(18): 6779–6786
CrossRef Google scholar
[56]
ZhouYXuWWeiZTianDZhuBQiaoSChenY XHeQSongL. Molecular iridium catalyzed electrochemical formic acid oxidation: mechanistic insights. Angewandte Chemie International Edition, 2024, in press
[57]
Yu W , Wang Y , Tian D , Zeng C . DFT investigation of the reaction mechanism for methane steam reforming on a cerium-nickel catalyst for production of syngas. Computational Materials Science, 2024, 244: 113217
CrossRef Google scholar
[58]
Li Y , Chen M , Jiang L , Tian D , Li K . Perovskite as oxygen storage materials for chemical looping partial oxidation and reforming of methane. Physical Chemistry Chemical Physics, 2024, 26(3): 1516–1540
CrossRef Google scholar
[59]
Xia R , Tian D , Kattel S , Hasa B , Shin H , Ma X , Chen J G , Jiao F . Electrochemical reduction of acetonitrile to ethylamine. Nature Communications, 2021, 12(1): 1–8
CrossRef Google scholar
[60]
Xie Z , Tian D , Xie M , Yang S Z , Xu Y , Rui N , Lee J H , Senanayake S D , Li K , Wang H . . Interfacial active sites for CO2 assisted selective cleavage of C–C/C–H bonds in ethane. Chem, 2020, 6(10): 2703–2716
CrossRef Google scholar
[61]
He Q , Tian D , Jiang H , Cao D , Wei S , Liu D , Song P , Lin Y , Song L . Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites. Advanced Materials, 2020, 32(11): 1906972
CrossRef Google scholar
[62]
Qin B , Zhou Z , Li S , Gao P . Understanding the structure-performance relationship of cubic In2O3 catalysts for CO2 hydrogenation. Journal of CO2 Utilization, 2021, 49: 101543
[63]
Dou M , Zhang M , Chen Y , Yu Y . Theoretical insights into the surface structure of In2O3 (110) surface and its effect on methanol synthesis from CO2 hydrogenation. Computational & Theoretical Chemistry, 2018, 1126: 7–15
CrossRef Google scholar
[64]
Ye J , Liu C J , Mei D , Ge Q . Methanol synthesis from CO2 hydrogenation over a Pd4/In2O3 model catalyst: a combined DFT and kinetic study. Journal of Catalysis, 2014, 317: 44–53
CrossRef Google scholar
[65]
Tian P , Cai Z , Zhan G , Huang J , Li Q . Preparation of supported In2O3/Pd nanocatalysts using natural pollen as bio-templates for CO2 hydrogenation to methanol: effect of acid-etching on template. Molecular Catalysis, 2021, 516: 111945
CrossRef Google scholar
[66]
Ye J , Ge Q , Liu C J . Effect of PdIn bimetallic particle formation on CO2 reduction over the Pd-In/SiO2 catalyst. Chemical Engineering Science, 2015, 135: 193–201
CrossRef Google scholar
[67]
Dou M , Zhang M , Chen Y , Yu Y . DFT study of In2O3-catalyzed methanol synthesis from CO2 and CO hydrogenation on the defective site. New Journal of Chemistry, 2018, 42(5): 3293–3300
CrossRef Google scholar
[68]
Wu L , Zou R , Shen C , Liu C J . CO2 hydrogenation to methanol over In2O3: the size effect. Energy & Fuels, 2023, 37(23): 18120–18127
CrossRef Google scholar
[69]
Xiong S , Lu Z , Shen C , Liu C J . ZrO2 promoted Ru/In2O3 catalyst for selective hydrogenation of CO2 to methanol. Chemical Engineering Science, 2023, 282: 119246
CrossRef Google scholar
[70]
Tsoukalou A , Abdala P M , Stoian D , Huang X , Willinger M G , Fedorov A , Müller C R . Structural evolution and dynamics of an In2O3 catalyst for CO2 hydrogenation to methanol: an operando XAS-XRD and in situ TEM study. Journal of the American Chemical Society, 2019, 141(34): 13497–13505
CrossRef Google scholar
[71]
Lu R , Zhang X , Li S S , Wang Y , Song T , Zhu T , Zhang H , Zheng R , Zhang X . Pt-promoted In2O3 reduction and reconstruction at the Pt/In2O3 interface in CO2 hydrogenation atmosphere. ChemCatChem, 2023, 15(11): e202201435
CrossRef Google scholar
[72]
Tian G , Wu Y , Wu S , Huang S , Gao J . Solid-state synthesis of Pd/In2O3 catalysts for CO2 hydrogenation to methanol. Catalysis Letters, 2023, 153(3): 903–910
CrossRef Google scholar
[73]
Zou R , Sun K , Shen C , Liu C J . Density functional theoretical study of the tungsten-doped In2O3 catalyst for CO2 hydrogenation to methanol. Physical Chemistry Chemical Physics, 2022, 24(41): 25522–25529
CrossRef Google scholar
[74]
Yang Y , Shen C , Sun K , Mei D , Liu C J . Enhanced surface charge localization over nitrogen-doped In2O3 for CO2 hydrogenation to methanol with improved stability. ACS Catalysis, 2023, 13(9): 6154–6168
CrossRef Google scholar
[75]
Rui N , Wang X , Deng K , Moncada J , Rosales R , Zhang F , Rodriguez J A . Atomic structural origin of the high methanol selectivity over In2O3-metal interfaces: metal-support interactions and the formation of a InOx overlayer in Ru/In2O3 catalysts during CO2 hydrogenation. ACS Catalysis, 2023, 13(5): 3187–3200
CrossRef Google scholar
[76]
Zou R , Shen C , Sun K , Ma X , Li Z , Li M , Liu C J . CO2 hydrogenation to methanol over the copper promoted In2O3 catalyst. Journal of Energy Chemistry, 2024, 93: 135–145
CrossRef Google scholar
[77]
Liu L , Cannizzaro F , Kaychouhi A , Kosinov N , Hensen E J M . Cr as a promoter for the In2O3-catalyzed hydrogenation of CO2 to methanol. Chemical Engineering Journal, 2024, 494: 153204
CrossRef Google scholar
[78]
Liu L , Mezari B , Kosinov N , Hensen E J M . Al promotion of In2O3 for CO2 hydrogenation to methanol. ACS Catalysis, 2023, 13(24): 15730–15745
CrossRef Google scholar
[79]
Deng B , Song H , Wang Q , Hong J , Song S , Zhang Y . Highly efficient and stable photothermal catalytic CO2 hydrogenation to methanol over Ru/In2O3 under atmospheric pressure. Applied Catalysis B: Environment and Energy, 2023, 327: 122471
[80]
Zhou Z , Wang Y , Bao Y , Yang H , Li J , Chang C , Li S , Gao P . Nickel-modified In2O3 with inherent oxygen vacancies for CO2 hydrogenation to methanol. Science China: Chemistry, 2024, 67(5): 1–14
CrossRef Google scholar
[81]
Li K , Wei Z , Chang Q , Li S . DFT-based microkinetic studies on methanol synthesis from CO2 hydrogenation over In2O3 and Zr-In2O3 catalysts. Physical Chemistry Chemical Physics, 2023, 25(21): 14961–14968
CrossRef Google scholar
[82]
Shen C , Sun K , Zhang Z , Rui N , Jia X , Mei D , Liu C J . Highly active Ir/In2O3 catalysts for selective hydrogenation of CO2 to methanol: experimental and theoretical studies. ACS Catalysis, 2021, 11(7): 4036–4046
CrossRef Google scholar
[83]
Chou C Y , Lobo R F . Direct conversion of CO2 into methanol over promoted indium oxide-based catalysts. Applied Catalysis A: General, 2019, 583: 117144
CrossRef Google scholar
[84]
Frei M S , Mondelli C , García-Muelas R , Morales-Vidal J , Philipp M , Safonova O V , Pérez-Ramírez J . Nanostructure of nickel-promoted indium oxide catalysts drives selectivity in CO2 hydrogenation. Nature Communications, 2021, 12(1): 1960
CrossRef Google scholar
[85]
Liu L , Gao Y , Zhang H , Kosinov N , Hensen E J M . Ni and ZrO2 promotion of In2O3 for CO2 hydrogenation to methanol. Applied Catalysis B: Environment and Energy, 2024, 356: 124210
[86]
Salomone F , Sartoretti E , Ballauri S , Castellino M , Novara C , Giorgis F , Pirone R , Bensaid S . CO2 hydrogenation to methanol over Zr- and Ce-doped indium oxide. Catalysis Today, 2023, 423: 114023
CrossRef Google scholar
[87]
Araújo T P , Morales-Vidal J , Giannakakis G , Mondelli C , Eliasson H , Erni R , Stewart J A , Mitchell S , López N , Pérez-Ramírez J . Reaction-induced metal-metal oxide interactions in Pd-In2O3/ZrO2 catalysts drive selective and stable CO2 hydrogenation to methanol. Angewandte Chemie International Edition, 2023, 62(42): e202306563
CrossRef Google scholar
[88]
Sun K , Rui N , Zhang Z , Sun Z , Ge Q , Liu C J . A highly active Pt/In2O3 catalyst for CO2 hydrogenation to methanol with enhanced stability. Green Chemistry, 2020, 22(15): 5059–5066
CrossRef Google scholar
[89]
Han Z , Tang C , Wang J , Li L , Li C . Atomically dispersed Ptn+ species as highly active sites in Pt/In2O3 catalysts for methanol synthesis from CO2 hydrogenation. Journal of Catalysis, 2021, 394: 236–244
CrossRef Google scholar
[90]
Rui N , Sun K , Shen C , Liu C J . Density functional theoretical study of Au4/In2O3 catalyst for CO2 hydrogenation to methanol: the strong metal-support interaction and its effect. Journal of CO2 Utilization, 2020, 42: 101313
[91]
Rui N , Zhang F , Sun K , Liu Z , Xu W , Stavitski E , Senanayake S D , Rodriguez J A , Liu C J . Hydrogenation of CO2 to methanol on a Auδ+-In2O3–x catalyst. ACS Catalysis, 2020, 10(19): 11307–11317
CrossRef Google scholar
[92]
Qin H , Zhang H , Wang K , Wang X , Fan W . Theoretical study of CO2 hydrogenation to methanol on modified Au/In2O3 catalysts: effects of hydrogen spillover and activation energy prediction for hydrogen transfer. Surface Science, 2024, 744: 122469
CrossRef Google scholar
[93]
Sun K , Zhang Z , Shen C , Rui N , Liu C J . The feasibility study of the indium oxide supported silver catalyst for selective hydrogenation of CO2 to methanol. Green Energy & Environment, 2022, 7(4): 807–817
CrossRef Google scholar
[94]
Zhu Y , Ma H , Qian W , Zhang H , Zhang H , Ying W . Co- and Ni-promoted indium oxide for CO2 hydrogenation to methanol. Catalysis Science & Technology, 2024, 14(13): 3771–3783
CrossRef Google scholar
[95]
Mezzapesa M P , Salomone F , Guzmán H , Zammillo F , Millini R , Bua L , Marra G , Tacca A , Marrazzo R , Russo N . . Development of In-Cu binary oxide catalysts for hydrogenating CO2 via thermocatalytic and electrocatalytic routes. Inorganic Chemistry Frontiers, 2024, 11(8): 2319–2338
CrossRef Google scholar
[96]
Sharma P , Hoang Ho P , Shao J , Creaser D , Olsson L . Role of ZrO2 and CeO2 support on the In2O3 catalyst activity for CO2 hydrogenation. Fuel, 2023, 331: 125878
CrossRef Google scholar
[97]
García-Trenco A , Regoutz A , White E R , Payne D J , Shaffer M S , Williams C K . PdIn intermetallic nanoparticles for the hydrogenation of CO2 to methanol. Applied Catalysis B: Environmental, 2018, 220: 9–18
CrossRef Google scholar
[98]
Snider J L , Streibel V , Hubert M A , Choksi T S , Valle E , Upham D C , Schumann J , Duyar M S , Gallo A , Abild-Pedersen F . . Revealing the synergy between oxide and alloy phases on the performance of bimetallic In-Pd catalysts for CO2 hydrogenation to methanol. ACS Catalysis, 2019, 9(4): 3399–3412
CrossRef Google scholar
[99]
Guo J , Wang Z , Gao T , Wang Z . Experimental and theoretical study of Pd-Pt/In2O3 bimetallic catalysts for enhancing methanol production from CO2. Chemical Engineering Journal, 2024, 483: 149370
CrossRef Google scholar
[100]
Ho P H , Tizzanini G , Ghosh S , Di W , Shao J , Pajalic O , Josefsson L , Benito P , Creaser D , Olsson L . Effect of the preparation methods on the physicochemical properties of indium-based catalysts and their catalytic performance for CO2 hydrogenation to methanol. Energy & Fuels, 2024, 38(6): 5407–5420
CrossRef Google scholar
[101]
Hou R , Xiao J , Wu Q , Zhang T , Wang Q . Boosting oxygen vacancies by modulating the morphology of Au decorated In2O3 with enhanced CO2 hydrogenation activity to CH3OH. Journal of Environmental Sciences (China), 2024, 140: 91–102
CrossRef Google scholar
[102]
Dou M , Zhang M , Chen Y , Yu Y . Mechanistic insight into the modification of the surface stability of In2O3 catalyst through metal oxide doping. Catalysis Letters, 2018, 148(12): 3723–3731
CrossRef Google scholar
[103]
Zhang M , Dou M , Yu Y . Theoretical study of the promotional effect of ZrO2 on In2O3 catalyzed methanol synthesis from CO2 hydrogenation. Applied Surface Science, 2018, 433: 780–789
CrossRef Google scholar
[104]
Zain M M , Mohammadi M , Kamiuchi N , Mohamed A R . Development of highly selective In2O3/ZrO2 catalyst for hydrogenation of CO2 to methanol: an insight into the catalyst preparation method. Korean Journal of Chemical Engineering, 2020, 37(10): 1680–1689
CrossRef Google scholar
[105]
Chen T Y , Cao C , Chen T B , Ding X , Huang H , Shen L , Cao X , Zhu M , Xu J , Gao J . . Unraveling highly tunable selectivity in CO2 hydrogenation over bimetallic In-Zr oxide catalysts. ACS Catalysis, 2019, 9(9): 8785–8797
CrossRef Google scholar
[106]
Yang C , Pei C , Luo R , Liu S , Wang Y , Wang Z , Zhao Z J , Gong J . Strong electronic oxide-support interaction over In2O3/ZrO2 for highly selective CO2 hydrogenation to methanol. Journal of the American Chemical Society, 2020, 142(46): 19523–19531
CrossRef Google scholar
[107]
Wang W , Zhang Y , Wang Z , Yan J M , Ge Q , Liu C J . Reverse water gas shift over In2O3-CeO2 catalysts. Catalysis Today, 2016, 259: 402–408
CrossRef Google scholar
[108]
Zhang K W , Chen Y F , Hu T P , Lu X M . Theoretical study of methanol synthesis from CO2 hydrogenation on the surface of NiO supported In2O3 (110) catalyst. Journal of Fuel Chemistry & Technology, 2021, 49(11): 1684–1692
CrossRef Google scholar
[109]
Tian G , Wu Y , Wu S , Huang S , Gao J . Influence of Mn and Mg oxides on the performance of In2O3 catalysts for CO2 hydrogenation to methanol. Chemical Physics Letters, 2022, 786: 139173
CrossRef Google scholar
[110]
Wang H , Yang C , Yu X , Wang M , Yang R , Nie X , Yin B H , Yip A C K , Song C , Zhang G . . Triple the steady-state reaction rate by decorating the In2O3 surface with SiOx for CO2 hydrogenation. Journal of Energy Chemistry, 2024, 95: 96–105
CrossRef Google scholar
[111]
Wang W , Huo K , Wang Y , Xie J , Sun X , He Y , Li M , Liang J , Gao X , Yang G . . Rational control of oxygen vacancy density in In2O3 to boost methanol synthesis from CO2 hydrogenation. ACS Catalysis, 2024, 14(13): 9887–9900
CrossRef Google scholar
[112]
Shi T , Men Y , Liu S , Wang J , Li Z , Qin K , Tian D , An W , Pan X , Li L . Engineering the crystal facets of Pt/In2O3 catalysts for high-efficiency methanol synthesis from CO2 hydrogenation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651: 129782
CrossRef Google scholar
[113]
Tsoukalou A , Abdala P M , Armutlulu A , Willinger E , Fedorov A , Müller C R . Operando X-ray absorption spectroscopy identifies a monoclinic ZrO2: in solid solution as the active phase for the hydrogenation of CO2 to methanol. ACS Catalysis, 2020, 10(17): 10060–10067
CrossRef Google scholar
[114]
Yan T , Li N , Wang L , Ran W , Duchesne P N , Wan L , Nguyen N T , Wang L , Xia M , Ozin G A . Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation. Nature Communications, 2020, 11(1): 6095
CrossRef Google scholar
[115]
Wei Z , Li S , Gao P . Reactivity of surface oxygen vacancy sites and frustrated Lewis acid-base pairs of In2O3 catalysts in CO2 hydrogenation. Physical Chemistry Chemical Physics, 2024, 26(23): 16449–16453
CrossRef Google scholar
[116]
Dostagir N H M , Tomuschat C R , Oshiro K , Gao M , Hasegawa J Y , Fukuoka A , Shrotri A . Mitigating the poisoning effect of formate during CO2 hydrogenation to methanol over Co-containing dual-atom oxide catalysts. JACS Au, 2024, 4(3): 1048–1058
CrossRef Google scholar
[117]
Lv X , Cheng D , Shou X , Liu J , Xu H . Bifunctional catalyst Ga2O3-mZrO2/SAPO-34 for CO2 hydrogenation: Ga2O3-mZrO2 improving light olefins. Catalysis Science & Technology, 2024, 14(13): 3652–3659
CrossRef Google scholar
[118]
Wang Y , Yang B , Gao B , Li L , Zhou Y , Zhang Y , Ishihara T , Guo L . Co3InC0.75-In2O3 composite construction and its synergetic hydrogenation catalysis of CO2 to methanol. Applied Catalysis A: General, 2023, 665: 119374
CrossRef Google scholar
[119]
Bavykina A , Yarulina I , Al Abdulghani A J , Gevers L , Hedhili M N , Miao X , Galilea A R , Pustovarenko A , Dikhtiarenko A , Cadiau A . . Turning a methanation Co catalyst into an In-Co methanol producer. ACS Catalysis, 2019, 9(8): 6910–6918
CrossRef Google scholar
[120]
Men Y L , Liu Y , Wang Q , Luo Z H , Shao S , Li Y B , Pan Y X . Highly dispersed Pt-based catalysts for selective CO2 hydrogenation to methanol at atmospheric pressure. Chemical Engineering Science, 2019, 200: 167–175
CrossRef Google scholar
[121]
Yao L , Shen X , Pan Y , Peng Z . Synergy between active sites of Cu-In-Zr-O catalyst in CO2 hydrogenation to methanol. Journal of Catalysis, 2019, 372: 74–85
CrossRef Google scholar
[122]
Yan T , Li N , Wang L , Liu Q , Ali F M , Wang L , Xu Y , Liang Y , Dai Y , Huang B . . How to make an efficient gas-phase heterogeneous CO2 hydrogenation photocatalyst. Energy & Environmental Science, 2020, 13(9): 3054–3063
CrossRef Google scholar
[123]
Chen K , Zhao X , Zhang X J , Zhang W S , Wu Z F , Wang H Y , Han D X , Niu L . Enhanced photocatalytic CO2 reduction by constructing an In2O3-CuO heterojunction with CuO as a cocatalyst. Catalysis Science & Technology, 2021, 11(8): 2713–2717
CrossRef Google scholar
[124]
Jia X , Sun K , Wang J , Shen C , Liu C J . Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst. Journal of Energy Chemistry, 2020, 50: 409–415
CrossRef Google scholar

Acknowledgements

This work has been financially supported by the National Natural Science Foundation of China (Grant Nos. U2202251, 52466006 and 52174279), Yunnan Fundamental Research Projects (Grant Nos. 202301AU070027 and 202401AT070388), Major R&D Special Project of Yunnan Province “Research and Application of Catalytic Conversion of CO2 to High Value Chemicals” (Grant No. 202302AG050005), Applied Basic Research Program of Yunnan Province for Distinguished Young Scholars (Grant No. 202201AV070004), Central Guiding Local Science and Technology Development Fund (Grant No. 202207AA110001) and the analyze test fund of Kunming University of Science and Technology (Grant No. 2023T20210207).

Competing interests

The authors declare that they have no competing interests.

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(2833 KB)

Accesses

Citations

Detail

Sections
Recommended

/