Organic-inorganic hybrid hydrogel electrolyte for high-performance quasi-solid-state zinc-air batteries

Mingzhu Wu, Niu Huang, Minghui Lv, Fengyi Wang, Fang Ma, Yihan Deng, Panpan Sun, Yong Zheng, Wei Liu, Liqun Ye

PDF(1268 KB)
PDF(1268 KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (3) : 15. DOI: 10.1007/s11705-025-2519-4
RESEARCH ARTICLE

Organic-inorganic hybrid hydrogel electrolyte for high-performance quasi-solid-state zinc-air batteries

Author information +
History +

Abstract

Flexible aqueous zinc-air batteries with high energy density and safety have garnered significant attention. Gel polymer electrolytes have emerged as the preferred option over conventional liquid electrolytes due to their ability to prevent electrolyte leakage. In this study, a composite PANa-PVP-TiO2(NH2) hydrogel with high alkaline resistance and ionic conductivity is designed, where the inorganic TiO2(NH2) nanoparticles are evenly distributed and integrated into the organic dual network of polyacrylate sodium and polyvinyl pyrrolidone. The organic-inorganic hybrid structure enhances the absorption and retention capabilities for electrolyte solution, leading to impressive ionic conductivity of the gel polymer electrolyte throughout the operation of flexible aqueous zinc-air batteries. Additionally, the incorporation of TiO2(NH2) nanoparticles and the dual network construction effectively strengthen the mechanical strength and flexibility of the gel polymer electrolyte, suppressing by-products and zinc dendrite formation. The enhancements lead to the extended cycling longevity of zinc symmetric batteries and excellent power density, as well as the prolonged cycle life of flexible aqueous zinc-air batteries.

Graphical abstract

Keywords

gel polymer electrolyte / hydrogel electrolyte / dual network / inorganic nanoparticles / zinc-air battery

Cite this article

Download citation ▾
Mingzhu Wu, Niu Huang, Minghui Lv, Fengyi Wang, Fang Ma, Yihan Deng, Panpan Sun, Yong Zheng, Wei Liu, Liqun Ye. Organic-inorganic hybrid hydrogel electrolyte for high-performance quasi-solid-state zinc-air batteries. Front. Chem. Sci. Eng., 2025, 19(3): 15 https://doi.org/10.1007/s11705-025-2519-4

References

[1]
T T Nguyen , J Balamurugan , D H Kim , N H Kim , J H Lee . Hierarchical 3D oxygenated cobalt vanadium selenide nanosheets as advanced electrode for flexible zinc-cobalt and zinc-air batteries. Small, 2020, 16(48): 2004661
CrossRef Google scholar
[2]
A Wang , Y M Guo , F H Ning , X Y Liu , F J Li , J J Zhang , S G Lu , J Yi . Superoxide radical capture agent for a stable and efficient Li-CO2 battery: experimental and density functional theory studies. Energy & Fuels, 2024, 38(11): 10324–10332
CrossRef Google scholar
[3]
S Min , X Y Liu , A N Wang , F H Ning , Y Y Liu , J Q Qin , J J Zhang , S G Lu , J Yi . Facile construction of a water-defendable Li anode protection enables rechargeable Li-O2 battery operating in humid atmosphere. Chinese Chemical Letters, 2023, 34(10): 108586
CrossRef Google scholar
[4]
Y G Li , J Fu , C Zhong , T P Wu , Z W Chen , W B Hu , K Amine , J Lu . Recent advances in flexible zinc-based rechargeable batteries. Advanced Energy Materials, 2019, 9(1): 1802605
CrossRef Google scholar
[5]
B S Lee , S Cui , X Xing , H D Liu , X J Yue , V Petrova , H D Lim , R K Chen , P Liu . Dendrite suppression membranes for rechargeable zinc batteries. ACS Applied Materials & Interfaces, 2018, 10(45): 38928–38935
CrossRef Google scholar
[6]
M H Lv , C X Cui , N Huang , M Z Wu , Q Wang , T Gao , Y Zheng , H Li , W Liu , Y P Huang . . Precisely engineering asymmetric atomic CoN4 by electron donating and extracting for oxygen reduction reaction. Angewandte Chemie International Edition, 2024, 63(21): e202315802
CrossRef Google scholar
[7]
M H Lv , C Luo , J L Li , Y L Zhang , Q Zeng , N Huang , S G Wang , Y Zheng , W Liu , L Q Ye . Quasi-solid-state flexible Zn-air batteries with a hydrophilic-treated Co@NCNTS array electrocatalyst and PEO-PANa electrolyte. ACS Materials Letters, 2023, 5(3): 744–752
CrossRef Google scholar
[8]
J Wu , Y C Wang , D N Deng , Y Bai , M J Liu , X Zhao , X Xiong , Y P Lei . Low-temperature resistant gel polymer electrolytes for zinc-air batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(37): 19304–19319
CrossRef Google scholar
[9]
L T Ma , S M Chen , N Li , Z X Liu , Z J Tang , J A Zapien , S M Chen , J Fan , C Y Zhi . Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Advanced Materials, 2020, 32(14): 1908121
CrossRef Google scholar
[10]
J J Wang , J G Wang , H Y Liu , Z Y You , Z Li , F Y Kang , B Q Wei . A highly flexible and lightweight MnO2/graphene membrane for superior zinc-ion batteries. Advanced Functional Materials, 2021, 31(7): 2007397
CrossRef Google scholar
[11]
D L Chao , C R Zhu , M Song , P Liang , X Zhang , N H Tiep , H F Zhao , J Wang , R M Wang , H Zhang . . A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Advanced Materials, 2018, 30(32): 1803181
CrossRef Google scholar
[12]
C Y Wang , M Q Gao , C C Zhao , L M Zhao , H Zhao . Metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrids as efficient bifunctional oxygen electrodes for Zn-air batteries. Frontiers of Chemical Science and Engineering, 2022, 16(9): 1367–1376
CrossRef Google scholar
[13]
J K Wu , B Liu , X Y Fan , J Ding , X P Han , Y D Deng , W B Hu , C Zhong . Carbon-based cathode materials for rechargeable zinc-air batteries: from current collectors to bifunctional integrated air electrodes. Carbon Energy, 2020, 2(3): 370–386
CrossRef Google scholar
[14]
X Y Gao , H Z Zhang , X Q Liu , X H Lu . Flexible Zn-ion batteries based on manganese oxides: progress and prospect. Carbon Energy, 2020, 2(3): 387–407
CrossRef Google scholar
[15]
X H Chen , P C Ru , X W Wu , S Q Liang , J Zhou . Crystal structures, reaction mechanisms, and optimization strategies of MnO2 cathode for aqueous rechargeable zinc batteries. Acta Physico-Chimica Sininca, 2022, 38: 2111003
[16]
X H Qin , Y H Du , P C Zhang , X Y Wang , Q Q Lu , A K Yang , J C Sun . Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries. International Journal of Minerals Metallurgy and Materials, 2021, 28(10): 1684–1692
CrossRef Google scholar
[17]
S S Shinde , J Y Jung , N K Wagh , C H Lee , D H Kim , S H Kim , S U Lee , J H Lee . Ampere-hour-scale zin-air pouch cells. Nature Energy, 2021, 6(6): 592–604
CrossRef Google scholar
[18]
H T Teng , W T Wang , X F Han , X Hao , R Z Yang , J H Tian . Recent development and perspectives of flexible zinc-air batteries. Acta Physico-Chimica Sininca, 2023, 39: 2107017–2107010
[19]
M S Yang , Y F Liu , J Q Sun , S S Zhang , X J Liu , J Luo . Integration of partially phosphatized bimetal centers into trifunctional catalyst for high-performance hydrogen production and flexible Zn-air battery. Science China Materials, 2022, 65(5): 1176–1186
CrossRef Google scholar
[20]
Y T Wei , Y C Shi , Y Chen , C H Xiao , S J Ding . Development of solid electrolytes in Zn-air and Al-air batteries: from material selection to performance improvement strategies. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(8): 4415–4453
CrossRef Google scholar
[21]
S L Han , Y N Hao , Z Y Guo , D S Yu , H J Huang , F Hu , L L Li , H Y Chen , S J Peng . Self-supported N-doped NiSe2 hierarchical porous nanoflake arrays for efficient oxygen electrocatalysis in flexible zinc-air batteries. Chemical Engineering Journal, 2020, 401: 126088
CrossRef Google scholar
[22]
Z G Pei , Z W Yuan , C J Wang , S L Zhao , J Y Fei , L Wei , J S Chen , C Wang , R J Qi , Z W Liu . . A Flexible rechargeable zinc-air battery with excellent low-temperature adaptability. Angewandte Chemie International Edition, 2020, 59(12): 4793–4799
CrossRef Google scholar
[23]
H B Dong , J W Li , J Guo , F L Lai , F J Zhao , Y D Jiao , D J L Brett , T X Liu , G J He , I P Parkin . Insights on flexible zinc-ion batteries from lab research to commercialization. Advanced Materials, 2021, 33(20): 2007548
CrossRef Google scholar
[24]
C Y Chan , Z Q Wang , H Jia , P F Ng , L Chow , B Fei . Recent advances of hydrogel electrolytes in flexible energy storage devices. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(4): 2043–2069
CrossRef Google scholar
[25]
W G Moon , G P Kim , M Lee , H D Song , J Yi . A biodegradable gel electrolyte for use in high-performance flexible supercapacitors. ACS Applied Materials & Interfaces, 2015, 7(6): 3503–3511
CrossRef Google scholar
[26]
X R Liu , X Y Fan , B Liu , J Ding , Y D Deng , X P Han , C Zhong , W B Hu . Mapping the design of electrolyte materials for electrically rechargeable zinc-air batteries. Advanced Materials, 2021, 33(31): 2006461
CrossRef Google scholar
[27]
Z S Song , J Ding , B Liu , X R Liu , X P Han , Y D Deng , W B Hu , C Zhong . A rechargeable Zn-air battery with high energy efficiency and long life enabled by a highly water-retentive gel electrolyte with reaction modifier. Advanced Materials, 2020, 32(22): 1908127
CrossRef Google scholar
[28]
K N Dinh , Z X Pei , Z W Yuan , V C Hoang , L Wei , Q W Huang , X Z Liao , C T Liu , Y Chen , Q Y Yan . The on-demand engineering of metal-doped porous carbon nanofibers as efficient bifunctional oxygen catalysts for high-performance flexible Zn-air batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(15): 7297–7308
CrossRef Google scholar
[29]
Y Huang , Z Li , Z X Pei , Z X Liu , H F Li , M S Zhu , J Fan , Q B Dai , M D Zhang , L M Dai . . Solid-state rechargeable Zn//NiCo and Zn-air batteries with ultralong lifetime and high capacity: the role of a sodium polyacrylate hydrogel electrolyte. Advanced Energy Materials, 2018, 8(31): 802288
CrossRef Google scholar
[30]
Z X Pei , Y Huang , Z J Tang , L T Ma , Z X Liu , Q Xue , Z F Wang , H F Li , Y Chen , C Y Zhi . Enabling highly efficient, flexible and rechargeable quasi-solid-state Zn-air batteries via catalyst engineering and electrolyte functionalization. Energy Storage Materials, 2019, 20: 234–242
CrossRef Google scholar
[31]
H Miao , B Chen , S H Li , X Y Wu , Q Wang , C F Zhang , Z X Sun , H Li . All-solid-state flexible zinc-air battery with polyacrylamide alkaline gel electrolyte. Journal of Power Sources, 2020, 450: 227653
CrossRef Google scholar
[32]
B G Zhou , Y H Li , Y Chen , C Gao , J C Li , Z Q Bai , J S Guo . In situ synthesis of highly stretchable, freeze-tolerant silk-polyelectrolyte double-network hydrogels for multifunctional flexible sensing. Chemical Engineering Journal, 2022, 446: 137405
CrossRef Google scholar
[33]
W T Zhang , F J Guo , H Y Mi , Z S Wu , C C Ji , C C Yang , J S Qiu . Kinetics-boosted effect enabled by zwitterionic hydrogel electrolyte for highly reversible zinc anode in zinc-ion hybrid micro-supercapacitors. Advanced Energy Materials, 2022, 12(40): 2202219
CrossRef Google scholar
[34]
X Y Fan , J Liu , Z S Song , X P Han , Y D Deng , C Zhong , W B Hu . Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc-air batteries. Nano Energy, 2019, 56: 454–462
CrossRef Google scholar
[35]
W J Yang , R H Yu , S H Zhu , G Wang , B M Zhang , J H Li , S Y Xue , S Y Qi , L Zhang , K N Zhao . Artificial hydrophilic organic and dendrite-suppressed inorganic hybrid solid electrolyte interface layer for highly stable zinc anodes. ACS Applied Materials & Interfaces, 2024, 16(8): 10218–10226
CrossRef Google scholar
[36]
X H Ye , H Y Huang , L Z Chen , Y Wang , M C Weng , L N Zhang , Z L Luo . All-round supercapacitors: a rational design of sustainable hydrogel electrolyte utilizing calcium salts. Chemical Engineering Journal, 2024, 483: 149158
CrossRef Google scholar
[37]
A S Oliveira , O Seidi , N Ribeiro , R Colaco , A P Serro . Tribomechanical comparison between PVA-KOH hydrogels obtained using different processing conditions and human cartilage. Materials, 2019, 12(20): 3413
CrossRef Google scholar
[38]
Y Li , X Y Fan , X R Liu , S X Qu , J Liu , J Ding , X P Han , Y D Deng , W B Hu , C Zhong . Long-battery-life flexible zinc-air battery with near-neutral polymer electrolyte and nanoporous integrated air electrode. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(44): 25449–25457
CrossRef Google scholar
[39]
J B Fan , Y Y Song , S T Wang , J X Meng , G Yang , X L Guo , L Feng , L Jiang . Directly coating hydrogel on filter paper for effective oil-water separation in highly acidic, alkaline, and salty environment. Advanced Functional Materials, 2015, 25(33): 5368–5375
CrossRef Google scholar
[40]
L Song , Y X Qiu , X Zhang , F Q Liu , A M Li . Green strategy with high iron utilization for Cr(VI) removal via sodium polyacrylate-based hydrogel. Chemical Engineering Journal, 2022, 442: 136162
CrossRef Google scholar
[41]
Y N Zhang , Y J Chen , M Alfred , F L Huang , S Q Liao , D S Chen , D W Li , Q F Wei . Alkaline sodium polyacrylate-starch hydrogels with tolerance to cold conditions for stretchable zinc-air batteries. Composites Part B: Engineering, 2021, 224: 109228
CrossRef Google scholar
[42]
J E Martín-Alfonso , E Číková , M Omastová . Development and characterization of composite fibers based on tragacanth gum and polyvinylpyrrolidone. Composites Part B: Engineering, 2019, 169: 79–87
CrossRef Google scholar
[43]
D L Lu , C Liu , F T Zhu , Y Liu , Y S Lin , Q D Yang , S Han . Fabrication and performance of novel multifunctional sodium alginate/polyvinylpyrrolidone hydrogels. Chemosphere, 2024, 348: 140758
CrossRef Google scholar
[44]
K N Grew , W K S Chiu . A dusty fluid model for predicting hydroxyl anion conductivity in alkaline anion exchange membranes. Journal of the Electrochemical Society, 2010, 157(3): B327
CrossRef Google scholar
[45]
J Zhang , J Fu , X P Song , G P Jiang , H Zarrin , P Xu , K C Li , A P Yu , Z W Chen . Laminated cross-linked nanocellulose/graphene oxide electrolyte for flexible rechargeable zinc-air batteries. Advanced Functional Materials, 2016, 6: 1600476
[46]
X Fan , H Z Wang , X R Liu , J Liu , N Q Zhao , C Zhong , W B Hu , J Lu . Functionalized nanocomposite gel polymer electrolyte with strong alkaline-tolerance and high zinc anode stability for ultralong-life flexible zinc-air batteries. Advanced Materials, 2023, 35(7): 2209290
CrossRef Google scholar
[47]
J L Li , N Huang , M H Lv , N Su , C Li , Y P Huang , Y Y Wang , Y Zheng , W Liu , T Y Ma . . OER highly active encapsulants to improve the electrochemical anticorrosion of Fe-N-C for ultralong-lifespan and high-rate rechargeable zinc-air batteries. Energy & Environmental Science: Catalysis, 2023, 1: 987–997

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 51872147, 22136003), the Project of Hubei Provincial Department of Education (Grant No. D20221202), the 111 Project (Grant No. D20015), and the Hubei Provincial Natural Science Foundation of China (Grant Nos. 2022CFA065, 2022CFB820).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-025-2519-4 and is accessible for authorized users.

Competing interests

The authors declare that they have no competing interests.

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(1268 KB)

Accesses

Citations

Detail

Sections
Recommended

/