Organic-inorganic hybrid hydrogel electrolyte for high-performance quasi-solid-state zinc-air batteries

Mingzhu Wu , Niu Huang , Minghui Lv , Fengyi Wang , Fang Ma , Yihan Deng , Panpan Sun , Yong Zheng , Wei Liu , Liqun Ye

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (3) : 15

PDF (1268KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (3) : 15 DOI: 10.1007/s11705-025-2519-4
RESEARCH ARTICLE

Organic-inorganic hybrid hydrogel electrolyte for high-performance quasi-solid-state zinc-air batteries

Author information +
History +
PDF (1268KB)

Abstract

Flexible aqueous zinc-air batteries with high energy density and safety have garnered significant attention. Gel polymer electrolytes have emerged as the preferred option over conventional liquid electrolytes due to their ability to prevent electrolyte leakage. In this study, a composite PANa-PVP-TiO2(NH2) hydrogel with high alkaline resistance and ionic conductivity is designed, where the inorganic TiO2(NH2) nanoparticles are evenly distributed and integrated into the organic dual network of polyacrylate sodium and polyvinyl pyrrolidone. The organic-inorganic hybrid structure enhances the absorption and retention capabilities for electrolyte solution, leading to impressive ionic conductivity of the gel polymer electrolyte throughout the operation of flexible aqueous zinc-air batteries. Additionally, the incorporation of TiO2(NH2) nanoparticles and the dual network construction effectively strengthen the mechanical strength and flexibility of the gel polymer electrolyte, suppressing by-products and zinc dendrite formation. The enhancements lead to the extended cycling longevity of zinc symmetric batteries and excellent power density, as well as the prolonged cycle life of flexible aqueous zinc-air batteries.

Graphical abstract

Keywords

gel polymer electrolyte / hydrogel electrolyte / dual network / inorganic nanoparticles / zinc-air battery

Cite this article

Download citation ▾
Mingzhu Wu, Niu Huang, Minghui Lv, Fengyi Wang, Fang Ma, Yihan Deng, Panpan Sun, Yong Zheng, Wei Liu, Liqun Ye. Organic-inorganic hybrid hydrogel electrolyte for high-performance quasi-solid-state zinc-air batteries. Front. Chem. Sci. Eng., 2025, 19(3): 15 DOI:10.1007/s11705-025-2519-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nguyen T T , Balamurugan J , Kim D H , Kim N H , Lee J H . Hierarchical 3D oxygenated cobalt vanadium selenide nanosheets as advanced electrode for flexible zinc-cobalt and zinc-air batteries. Small, 2020, 16(48): 2004661

[2]

Wang A , Guo Y M , Ning F H , Liu X Y , Li F J , Zhang J J , Lu S G , Yi J . Superoxide radical capture agent for a stable and efficient Li-CO2 battery: experimental and density functional theory studies. Energy & Fuels, 2024, 38(11): 10324–10332

[3]

Min S , Liu X Y , Wang A N , Ning F H , Liu Y Y , Qin J Q , Zhang J J , Lu S G , Yi J . Facile construction of a water-defendable Li anode protection enables rechargeable Li-O2 battery operating in humid atmosphere. Chinese Chemical Letters, 2023, 34(10): 108586

[4]

Li Y G , Fu J , Zhong C , Wu T P , Chen Z W , Hu W B , Amine K , Lu J . Recent advances in flexible zinc-based rechargeable batteries. Advanced Energy Materials, 2019, 9(1): 1802605

[5]

Lee B S , Cui S , Xing X , Liu H D , Yue X J , Petrova V , Lim H D , Chen R K , Liu P . Dendrite suppression membranes for rechargeable zinc batteries. ACS Applied Materials & Interfaces, 2018, 10(45): 38928–38935

[6]

Lv M H , Cui C X , Huang N , Wu M Z , Wang Q , Gao T , Zheng Y , Li H , Liu W , Huang Y P . . Precisely engineering asymmetric atomic CoN4 by electron donating and extracting for oxygen reduction reaction. Angewandte Chemie International Edition, 2024, 63(21): e202315802

[7]

Lv M H , Luo C , Li J L , Zhang Y L , Zeng Q , Huang N , Wang S G , Zheng Y , Liu W , Ye L Q . Quasi-solid-state flexible Zn-air batteries with a hydrophilic-treated Co@NCNTS array electrocatalyst and PEO-PANa electrolyte. ACS Materials Letters, 2023, 5(3): 744–752

[8]

Wu J , Wang Y C , Deng D N , Bai Y , Liu M J , Zhao X , Xiong X , Lei Y P . Low-temperature resistant gel polymer electrolytes for zinc-air batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(37): 19304–19319

[9]

Ma L T , Chen S M , Li N , Liu Z X , Tang Z J , Zapien J A , Chen S M , Fan J , Zhi C Y . Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Advanced Materials, 2020, 32(14): 1908121

[10]

Wang J J , Wang J G , Liu H Y , You Z Y , Li Z , Kang F Y , Wei B Q . A highly flexible and lightweight MnO2/graphene membrane for superior zinc-ion batteries. Advanced Functional Materials, 2021, 31(7): 2007397

[11]

Chao D L , Zhu C R , Song M , Liang P , Zhang X , Tiep N H , Zhao H F , Wang J , Wang R M , Zhang H . . A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Advanced Materials, 2018, 30(32): 1803181

[12]

Wang C Y , Gao M Q , Zhao C C , Zhao L M , Zhao H . Metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrids as efficient bifunctional oxygen electrodes for Zn-air batteries. Frontiers of Chemical Science and Engineering, 2022, 16(9): 1367–1376

[13]

Wu J K , Liu B , Fan X Y , Ding J , Han X P , Deng Y D , Hu W B , Zhong C . Carbon-based cathode materials for rechargeable zinc-air batteries: from current collectors to bifunctional integrated air electrodes. Carbon Energy, 2020, 2(3): 370–386

[14]

Gao X Y , Zhang H Z , Liu X Q , Lu X H . Flexible Zn-ion batteries based on manganese oxides: progress and prospect. Carbon Energy, 2020, 2(3): 387–407

[15]

Chen X H , Ru P C , Wu X W , Liang S Q , Zhou J . Crystal structures, reaction mechanisms, and optimization strategies of MnO2 cathode for aqueous rechargeable zinc batteries. Acta Physico-Chimica Sininca, 2022, 38: 2111003

[16]

Qin X H , Du Y H , Zhang P C , Wang X Y , Lu Q Q , Yang A K , Sun J C . Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries. International Journal of Minerals Metallurgy and Materials, 2021, 28(10): 1684–1692

[17]

Shinde S S , Jung J Y , Wagh N K , Lee C H , Kim D H , Kim S H , Lee S U , Lee J H . Ampere-hour-scale zin-air pouch cells. Nature Energy, 2021, 6(6): 592–604

[18]

Teng H T , Wang W T , Han X F , Hao X , Yang R Z , Tian J H . Recent development and perspectives of flexible zinc-air batteries. Acta Physico-Chimica Sininca, 2023, 39: 2107017–2107010

[19]

Yang M S , Liu Y F , Sun J Q , Zhang S S , Liu X J , Luo J . Integration of partially phosphatized bimetal centers into trifunctional catalyst for high-performance hydrogen production and flexible Zn-air battery. Science China Materials, 2022, 65(5): 1176–1186

[20]

Wei Y T , Shi Y C , Chen Y , Xiao C H , Ding S J . Development of solid electrolytes in Zn-air and Al-air batteries: from material selection to performance improvement strategies. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(8): 4415–4453

[21]

Han S L , Hao Y N , Guo Z Y , Yu D S , Huang H J , Hu F , Li L L , Chen H Y , Peng S J . Self-supported N-doped NiSe2 hierarchical porous nanoflake arrays for efficient oxygen electrocatalysis in flexible zinc-air batteries. Chemical Engineering Journal, 2020, 401: 126088

[22]

Pei Z G , Yuan Z W , Wang C J , Zhao S L , Fei J Y , Wei L , Chen J S , Wang C , Qi R J , Liu Z W . . A Flexible rechargeable zinc-air battery with excellent low-temperature adaptability. Angewandte Chemie International Edition, 2020, 59(12): 4793–4799

[23]

Dong H B , Li J W , Guo J , Lai F L , Zhao F J , Jiao Y D , Brett D J L , Liu T X , He G J , Parkin I P . Insights on flexible zinc-ion batteries from lab research to commercialization. Advanced Materials, 2021, 33(20): 2007548

[24]

Chan C Y , Wang Z Q , Jia H , Ng P F , Chow L , Fei B . Recent advances of hydrogel electrolytes in flexible energy storage devices. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(4): 2043–2069

[25]

Moon W G , Kim G P , Lee M , Song H D , Yi J . A biodegradable gel electrolyte for use in high-performance flexible supercapacitors. ACS Applied Materials & Interfaces, 2015, 7(6): 3503–3511

[26]

Liu X R , Fan X Y , Liu B , Ding J , Deng Y D , Han X P , Zhong C , Hu W B . Mapping the design of electrolyte materials for electrically rechargeable zinc-air batteries. Advanced Materials, 2021, 33(31): 2006461

[27]

Song Z S , Ding J , Liu B , Liu X R , Han X P , Deng Y D , Hu W B , Zhong C . A rechargeable Zn-air battery with high energy efficiency and long life enabled by a highly water-retentive gel electrolyte with reaction modifier. Advanced Materials, 2020, 32(22): 1908127

[28]

Dinh K N , Pei Z X , Yuan Z W , Hoang V C , Wei L , Huang Q W , Liao X Z , Liu C T , Chen Y , Yan Q Y . The on-demand engineering of metal-doped porous carbon nanofibers as efficient bifunctional oxygen catalysts for high-performance flexible Zn-air batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(15): 7297–7308

[29]

Huang Y , Li Z , Pei Z X , Liu Z X , Li H F , Zhu M S , Fan J , Dai Q B , Zhang M D , Dai L M . . Solid-state rechargeable Zn//NiCo and Zn-air batteries with ultralong lifetime and high capacity: the role of a sodium polyacrylate hydrogel electrolyte. Advanced Energy Materials, 2018, 8(31): 802288

[30]

Pei Z X , Huang Y , Tang Z J , Ma L T , Liu Z X , Xue Q , Wang Z F , Li H F , Chen Y , Zhi C Y . Enabling highly efficient, flexible and rechargeable quasi-solid-state Zn-air batteries via catalyst engineering and electrolyte functionalization. Energy Storage Materials, 2019, 20: 234–242

[31]

Miao H , Chen B , Li S H , Wu X Y , Wang Q , Zhang C F , Sun Z X , Li H . All-solid-state flexible zinc-air battery with polyacrylamide alkaline gel electrolyte. Journal of Power Sources, 2020, 450: 227653

[32]

Zhou B G , Li Y H , Chen Y , Gao C , Li J C , Bai Z Q , Guo J S . In situ synthesis of highly stretchable, freeze-tolerant silk-polyelectrolyte double-network hydrogels for multifunctional flexible sensing. Chemical Engineering Journal, 2022, 446: 137405

[33]

Zhang W T , Guo F J , Mi H Y , Wu Z S , Ji C C , Yang C C , Qiu J S . Kinetics-boosted effect enabled by zwitterionic hydrogel electrolyte for highly reversible zinc anode in zinc-ion hybrid micro-supercapacitors. Advanced Energy Materials, 2022, 12(40): 2202219

[34]

Fan X Y , Liu J , Song Z S , Han X P , Deng Y D , Zhong C , Hu W B . Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc-air batteries. Nano Energy, 2019, 56: 454–462

[35]

Yang W J , Yu R H , Zhu S H , Wang G , Zhang B M , Li J H , Xue S Y , Qi S Y , Zhang L , Zhao K N . Artificial hydrophilic organic and dendrite-suppressed inorganic hybrid solid electrolyte interface layer for highly stable zinc anodes. ACS Applied Materials & Interfaces, 2024, 16(8): 10218–10226

[36]

Ye X H , Huang H Y , Chen L Z , Wang Y , Weng M C , Zhang L N , Luo Z L . All-round supercapacitors: a rational design of sustainable hydrogel electrolyte utilizing calcium salts. Chemical Engineering Journal, 2024, 483: 149158

[37]

Oliveira A S , Seidi O , Ribeiro N , Colaco R , Serro A P . Tribomechanical comparison between PVA-KOH hydrogels obtained using different processing conditions and human cartilage. Materials, 2019, 12(20): 3413

[38]

Li Y , Fan X Y , Liu X R , Qu S X , Liu J , Ding J , Han X P , Deng Y D , Hu W B , Zhong C . Long-battery-life flexible zinc-air battery with near-neutral polymer electrolyte and nanoporous integrated air electrode. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(44): 25449–25457

[39]

Fan J B , Song Y Y , Wang S T , Meng J X , Yang G , Guo X L , Feng L , Jiang L . Directly coating hydrogel on filter paper for effective oil-water separation in highly acidic, alkaline, and salty environment. Advanced Functional Materials, 2015, 25(33): 5368–5375

[40]

Song L , Qiu Y X , Zhang X , Liu F Q , Li A M . Green strategy with high iron utilization for Cr(VI) removal via sodium polyacrylate-based hydrogel. Chemical Engineering Journal, 2022, 442: 136162

[41]

Zhang Y N , Chen Y J , Alfred M , Huang F L , Liao S Q , Chen D S , Li D W , Wei Q F . Alkaline sodium polyacrylate-starch hydrogels with tolerance to cold conditions for stretchable zinc-air batteries. Composites Part B: Engineering, 2021, 224: 109228

[42]

Martín-Alfonso J E , Číková E , Omastová M . Development and characterization of composite fibers based on tragacanth gum and polyvinylpyrrolidone. Composites Part B: Engineering, 2019, 169: 79–87

[43]

Lu D L , Liu C , Zhu F T , Liu Y , Lin Y S , Yang Q D , Han S . Fabrication and performance of novel multifunctional sodium alginate/polyvinylpyrrolidone hydrogels. Chemosphere, 2024, 348: 140758

[44]

Grew K N , Chiu W K S . A dusty fluid model for predicting hydroxyl anion conductivity in alkaline anion exchange membranes. Journal of the Electrochemical Society, 2010, 157(3): B327

[45]

Zhang J , Fu J , Song X P , Jiang G P , Zarrin H , Xu P , Li K C , Yu A P , Chen Z W . Laminated cross-linked nanocellulose/graphene oxide electrolyte for flexible rechargeable zinc-air batteries. Advanced Functional Materials, 2016, 6: 1600476

[46]

Fan X , Wang H Z , Liu X R , Liu J , Zhao N Q , Zhong C , Hu W B , Lu J . Functionalized nanocomposite gel polymer electrolyte with strong alkaline-tolerance and high zinc anode stability for ultralong-life flexible zinc-air batteries. Advanced Materials, 2023, 35(7): 2209290

[47]

Li J L , Huang N , Lv M H , Su N , Li C , Huang Y P , Wang Y Y , Zheng Y , Liu W , Ma T Y . . OER highly active encapsulants to improve the electrochemical anticorrosion of Fe-N-C for ultralong-lifespan and high-rate rechargeable zinc-air batteries. Energy & Environmental Science: Catalysis, 2023, 1: 987–997

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1268KB)

Supplementary files

FCE-24072-OF-WM_suppl_1

4707

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/