Enhanced CO2 adsorption properties with bimetallic ZnCe-MOF prepared using a microchannel reactor
Pin Cui, Ying Tang, Aixia Guo, Chenxu Wang, Minmin Liu, Wencai Peng, Feng Yu
Enhanced CO2 adsorption properties with bimetallic ZnCe-MOF prepared using a microchannel reactor
The use of metal-organic frameworks (MOFs) as CO2-gas-capture materials has attracted extensive research attention. In this study, two types of MOFs—Zn-MOF and ZnCe-MOF—were synthesized utilizing the microchannel reaction method, with water being employed as the solvent. The specific surface area, pore size, and pore volume of Zn-MOF and ZnCe-MOF were 1566.4 and 15.6 m2·g–1, 0.65 and 7.32 nm, as well as 1.65 and 0.03 cm3·g–1, respectively. Furthermore, Ce doping not only increased the pore size of ZnCe-MOF but also its adsorption energy from −0.19 eV (Zn-MOF) to −0.53 eV (ZnCe-MOF). At 298 K, the adsorption capacities of Zn-MOF and ZnCe-MOF were 0.66 and 0.74 mmol·g–1, respectively. In addition, the CO2 adsorption behaviors of Zn-MOF and ZnCe-MOF were linear and logarithmic, respectively. Theoretical calculations show that the results of adsorption thermodynamic simulations were consistent with the experiments. Thus, the preparation of ZnCe-MOF materials using a microchannel reactor provides a new approach for the continuous preparation of MOFs.
Metal-organic framework / microchannel reactor / reaction mechanism / CO2 capture adsorption
[1] |
Oschatz M , Antonietti M . A search for selectivity to enable CO2 capture with porous adsorbents. Energy & Environmental Science, 2018, 11(1): 57–70
CrossRef
Google scholar
|
[2] |
Madden D G , Scott H S , Kumar A , Chen K J , Sanii R , Bajpai A , Lusi M , Curtin T , Perry J J , Zaworotko M J . Flue-gas and direct-air capture of CO2 by porous metal-organic materials. Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 2017, 375(2084): 20160025
CrossRef
Google scholar
|
[3] |
Gao W , Liang S , Wang R , Jiang Q , Zhang Y , Zheng Q , Xie B , Toe C Y , Zhu X , Wang J .
CrossRef
Google scholar
|
[4] |
Liu H , Guo P , Regueira T , Wang Z , Du J , Chen G . Irreversible change of the pore structure of ZIF-8 in carbon dioxide capture with water coexistence. Journal of Physical Chemistry C, 2016, 120(24): 13287–13294
CrossRef
Google scholar
|
[5] |
Missaoui N , Bouzid M , Chrouda A , Kahri H , Barhoumi H , Pang A L , Ahmadipour M . Interpreting of the carbon dioxide adsorption on high surface area zeolitic imidazolate framework-8 (ZIF-8) nanoparticles using a statistical physics model. Microporous and Mesoporous Materials, 2023, 360: 112711
CrossRef
Google scholar
|
[6] |
Roussanaly S , Vitvarova M , Anantharaman R , Berstad D , Hagen B , Jakobsen J , Novotny V , Skaugen G . Techno-economic comparison of three technologies for pre-combustion CO2 capture from a lignite-fired IGCC. Frontiers of Chemical Science and Engineering, 2019, 14(3): 436–452
CrossRef
Google scholar
|
[7] |
Butt F S , Lewis A , Rea R , Mazlan N A , Chen T , Radacsi N , Mangano E , Fan X , Yang Y , Yang S .
CrossRef
Google scholar
|
[8] |
Zhang Z , Zhang J , Dou G , Zeng Q . Synthesis of PI/ZIF-8 aerogel with hierarchical porous structure for enhanced CO2 capture performance. Chemical Physics Letters, 2022, 801: 139703
CrossRef
Google scholar
|
[9] |
Yin M , Li Z , Wang L , Tang S . Preparation of hierarchically porous PVP/ZIF-8 in supercritical CO2 by PVP-induced defect-formation method for high-efficiency gas adsorption. Separation and Purification Technology, 2023, 314: 123550
CrossRef
Google scholar
|
[10] |
Huang J , Yang D , Hu Z , Zhang H , Zhang Z , Wang F , Xie Y , Liu S , Wang Q , Pittman C U . In situ growth of Zn-based metal-organic frameworks in ultra-high surface area nano-wood aerogel for efficient CO2 capture and separation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2023, 11(31): 16878–16888
CrossRef
Google scholar
|
[11] |
Shi Y , Tian G , Ni R , Zhang L , Hu W , Zhao Y . Facile and green lyocell/feather nonwovens with in-situ growth of ZIF-8 as adsorbent for physicochemical CO2 capture. Separation and Purification Technology, 2023, 322: 124356
CrossRef
Google scholar
|
[12] |
Mohammadi A , Nakhaei Pour A . Triethylenetetramine-impregnated ZIF-8 nanoparticles for CO2 adsorption. Journal of CO2 Utilization, 2023, 69: 102424
|
[13] |
Zhao X , Ding Y , Ma L , Zhu X , Wang H , Cheng M , Liao Q . An amine-functionalized strategy to enhance the CO2 absorption of type III porous liquids. Energy, 2023, 279: 127975
CrossRef
Google scholar
|
[14] |
Wu H , Li Q , Zhang Y , Qiu M , Liao Y , Xu H , Shi L , Yi Q . One-step supramolecular fabrication of ionic liquid/ZIF-8 nanocomposites for low-energy CO2 capture from flue gas and conversion. Fuel, 2022, 322: 124175
CrossRef
Google scholar
|
[15] |
Luz I , Soukri M , Lail M . Flying MOFs: polyamine-containing fluidized MOF/SiO2 hybrid materials for CO2 capture from post-combustion flue gas. Chemical Science, 2018, 9(20): 4589–4599
CrossRef
Google scholar
|
[16] |
Bien C E , Chen K K , Chien S C , Reiner B R , Lin L C , Wade C R , Ho W S W . Bioinspired metal-organic framework for trace CO2 capture. Journal of the American Chemical Society, 2018, 140(40): 12662–12666
CrossRef
Google scholar
|
[17] |
Wang C , Yuan H , Yu F , Zhang J , Li Y , Bao W , Wang Z , Lu K , Yu J , Bai G .
CrossRef
Google scholar
|
[18] |
Wang C , Wang Z , Yu J , Lu K , Bao W , Wang G , Peng B , Peng W , Yu F . Facile synthesis behavior and CO2 adsorption capacities of Zn-based metal organic framework prepared via a microchannel reactor. Chemical Engineering Journal, 2023, 454: 140078
CrossRef
Google scholar
|
[19] |
Aniruddha R , Shama V M , Sreedhar I , Patel C M . Bimetallic ZIFs based on Ce/Zn and Ce/Co combinations for stable and enhanced carbon capture. Journal of Cleaner Production, 2022, 350: 131478
CrossRef
Google scholar
|
[20] |
Torrez-Herrera J J , Korili S A , Gil A . Development of ceramic-MOF filters from aluminum saline slags for capturing CO2. Powder Technology, 2023, 429: 118962
CrossRef
Google scholar
|
[21] |
Yang F , Ge T , Zhu X , Wu J , Wang R . Study on CO2 capture in humid flue gas using amine-modified ZIF-8. Separation and Purification Technology, 2022, 287: 120535
CrossRef
Google scholar
|
[22] |
Ta D N , Nguyen H K D , Trinh B X , Le Q T N , Ta H N , Nguyen H T . Preparation of nano-ZIF-8 in methanol with high yield. Canadian Journal of Chemical Engineering, 2018, 96(7): 1518–1531
CrossRef
Google scholar
|
[23] |
Valencia L , Abdelhamid H N . Nanocellulose leaf-like zeolitic imidazolate framework (ZIF-L) foams for selective capture of carbon dioxide. Carbohydrate Polymers, 2019, 213: 338–345
CrossRef
Google scholar
|
[24] |
Fahda M , Ammar M , Saad W , Hmadeh Mand Al-Ghoul M . Taming the transition between ZIF-L-(Zn, Co) and ZIF-(8, 67) using a multi-inlet vortex mixer (MIVM). CrystEngComm, 2023, 25(10): 1519–1528
CrossRef
Google scholar
|
[25] |
Kida K , Okita M , Fujita K , Tanaka S , Miyake Y . Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm, 2013, 15(9): 1794–1801
CrossRef
Google scholar
|
[26] |
Zhang H , Hwang S , Wang M , Feng Z , Karakalos S , Luo L , Qiao Z , Xie X , Wang C , Su D .
CrossRef
Google scholar
|
[27] |
Abdelhamid H N . Removal of carbon dioxide using zeolitic imidazolate frameworks: adsorption and conversion via catalysis. Applied Organometallic Chemistry, 2022, 36(8): e6753
CrossRef
Google scholar
|
[28] |
Yu C , Kim Y J , Kim J , Eum K . ZIF-L to ZIF-8 transformation: morphology and structure controls. Nanomaterials, 2022, 12(23): 4224
CrossRef
Google scholar
|
[29] |
Lee G , Lee M , Jeong Y , Jang E , Baik H , Chul Jung J , Choi J . Chul Jung J, Choi J. Synthetic origin-dependent catalytic activity of metal-organic frameworks: unprecedented demonstration with ZIF-8 s on CO2 cycloaddition reaction. Chemical Engineering Journal, 2022, 435: 134964
CrossRef
Google scholar
|
[30] |
Challagulla S , Payra S , Rameshan R , Roy S . Low temperature catalytic reduction of NO over porous Pt/ZIF-8. Journal of Environmental Chemical Engineering, 2020, 8(4): 103815
CrossRef
Google scholar
|
[31] |
Yan Y , Wong R J , Ma Z , Donat F , Xi S , Saqline S , Fan Q , Du Y , Borgna A , He Q .
CrossRef
Google scholar
|
[32] |
Cichowska-Kopczyńska I , Mioduska J , Karczewski J . Double ZIF-L structures with exceptional CO2 capacity. Chemical Engineering Research & Design, 2022, 188: 1077–1082
CrossRef
Google scholar
|
[33] |
Troyano J , Carne-Sanchez A , Avci C , Imaz I , Maspoch D . Colloidal metal-organic framework particles: the pioneering case of ZIF-8. Chemical Society Reviews, 2019, 48(23): 5534–5546
CrossRef
Google scholar
|
[34] |
Li X , Zhao Z J , Zeng L , Zhao J , Tian H , Chen S , Li K , Sang S , Gong J . On the role of Ce in CO2 adsorption and activation over lanthanum species. Chemical Science, 2018, 9(14): 3426–3437
CrossRef
Google scholar
|
[35] |
Amato R D , Donnadio A , Carta M , Sangregorio C , Tiana D , Vivani R , Taddei M , Costantino F . Water-based synthesis and enhanced CO2 capture performance of perfluorinated cerium-based metal-organic frameworks with UiO-66 and MIL-140 topology. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 394–402
CrossRef
Google scholar
|
[36] |
Stawowy M , Róziewicz M , Szczepańska E , Silvestre-Albero J , Zawadzki M , Musioł M , Łuzny R , Kaczmarczyk J , Trawczyński J , Łamacz A . The impact of synthesis method on the properties and CO2 sorption capacity of UiO-66(Ce). Catalysts, 2019, 9(4): 309
CrossRef
Google scholar
|
[37] |
Graciani J , Mudiyanselage K , Xu F , Baber A E , Evans J , Senanayake S D , Stacchiola D J , Liu P , Hrbek J , Sanz J F .
CrossRef
Google scholar
|
[38] |
Shi J , Cui H , Xu J , Yan N , Zhang C , You S . Synthesis of nitrogen and sulfur co-doped carbons with chemical blowing method for CO2 adsorption. Fuel, 2021, 305: 121505
CrossRef
Google scholar
|
[39] |
Jiang M , Cao X , Zhu D , Duan Y , Zhang J . Hierarchically porous N-doped carbon derived from ZIF-8 nanocomposites for electrochemical applications. Electrochimica Acta, 2016, 196: 699–707
CrossRef
Google scholar
|
[40] |
Li Z , Werner K , Chen L , Jia A , Qian K , Zhong J Q , You R , Wu L , Zhang L , Pan H .
CrossRef
Google scholar
|
[41] |
Lykhach Y , Staudt T , Streber R , Lorenz M P A , Bayer A , Steinrück H P , Libuda J . CO2 activation on single crystal based ceria and magnesia/ceria model catalysts. European Physical Journal B, 2010, 75(1): 89–100
CrossRef
Google scholar
|
[42] |
Nugent P , Belmabkhout Y , Burd S D , Cairns A J , Luebke R , Forrest K , Pham T , Ma S , Space B , Wojtas L .
CrossRef
Google scholar
|
/
〈 | 〉 |