Excellent charge separation over NiCo2S4/CoTiO3 nanocomposites improved photocatalytic hydrogen production
Linlin Fan , Xin Guo , Lujun Wang , Zhiliang Jin , Noritatsu Tsubaki
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (1) : 7
Excellent charge separation over NiCo2S4/CoTiO3 nanocomposites improved photocatalytic hydrogen production
The rapid migration and separation of photoinduced carriers is a key factor influencing photocatalytic efficiency. Constructing an S-scheme heterojunction is a strategic technique to enhance the separation of photogenerated carriers and boost overall catalytic activity. Herein, a simple physical stirring technique was adopted to successfully fabricate a novel NiCo2S4/CoTiO3 S-scheme heterojunction photocatalyst. Upon exposure to light, the NiCo2S4/CoTiO3-10 specimen demonstrated an outstanding hydrogen evolution rate of 2037.76 μmol·g–1·h–1, exceeding twice the rate observed for the pristine NiCo2S4 (833.72 μmol·g–1·h–1). The experimental outcomes reveal that the incorporation of CoTiO3 significantly enhances the charge separation and transfer within the system. Concurrently, the formation of the S-scheme mechanism facilitates the separation of carriers while maintaining high redox capabilities. This work introduces an innovative approach to forming S-scheme heterojunctions based on bimetallic sulfides, thereby offering new prospects for the efficient utilization of solar energy.
NiCo2S4 / CoTiO3 / in situ X-ray photoelectron spectroscopy / S-scheme heterojunction
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
Higher Education Press
/
| 〈 |
|
〉 |