Excellent charge separation over NiCo2S4/CoTiO3 nanocomposites improved photocatalytic hydrogen production

Linlin Fan , Xin Guo , Lujun Wang , Zhiliang Jin , Noritatsu Tsubaki

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (1) : 7

PDF (1545KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (1) : 7 DOI: 10.1007/s11705-024-2509-y
RESEARCH ARTICLE

Excellent charge separation over NiCo2S4/CoTiO3 nanocomposites improved photocatalytic hydrogen production

Author information +
History +
PDF (1545KB)

Abstract

The rapid migration and separation of photoinduced carriers is a key factor influencing photocatalytic efficiency. Constructing an S-scheme heterojunction is a strategic technique to enhance the separation of photogenerated carriers and boost overall catalytic activity. Herein, a simple physical stirring technique was adopted to successfully fabricate a novel NiCo2S4/CoTiO3 S-scheme heterojunction photocatalyst. Upon exposure to light, the NiCo2S4/CoTiO3-10 specimen demonstrated an outstanding hydrogen evolution rate of 2037.76 μmol·g–1·h–1, exceeding twice the rate observed for the pristine NiCo2S4 (833.72 μmol·g–1·h–1). The experimental outcomes reveal that the incorporation of CoTiO3 significantly enhances the charge separation and transfer within the system. Concurrently, the formation of the S-scheme mechanism facilitates the separation of carriers while maintaining high redox capabilities. This work introduces an innovative approach to forming S-scheme heterojunctions based on bimetallic sulfides, thereby offering new prospects for the efficient utilization of solar energy.

Graphical abstract

Keywords

NiCo2S4 / CoTiO3 / in situ X-ray photoelectron spectroscopy / S-scheme heterojunction

Cite this article

Download citation ▾
Linlin Fan, Xin Guo, Lujun Wang, Zhiliang Jin, Noritatsu Tsubaki. Excellent charge separation over NiCo2S4/CoTiO3 nanocomposites improved photocatalytic hydrogen production. Front. Chem. Sci. Eng., 2025, 19(1): 7 DOI:10.1007/s11705-024-2509-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hai X , Fang L , Xiong M , Zhou X , Wang S , Sun H , Su C , Chen H . Charge density modulation of pyrene-related small molecules by nitrogen heteroatoms precisely regulates photocatalytic generation of hydrogen. ACS Nano, 2023, 17(20): 20570–20579

[2]

Zheng X , Song Y , Liu Y , Yang Y , Wu D , Yang Y , Feng S , Li J , Liu W , Shen Y . . ZnIn2S4-based photocatalysts for photocatalytic hydrogen evolution via water splitting. Coordination Chemistry Reviews, 2023, 475(15): 214898

[3]

Li X , Li Y , Guo X , Jin Z . Design and synthesis of ZnCo2O4/CdS for substaitially improved photocatalytic hydrogen production. Frontiers of Chemical Science and Engineering, 2023, 17(5): 606–616

[4]

Huang W , Xu F , Li D , Astruc D , Liu X . “On-off” switch for H2 and O2 generation from HCOOH resp. H2O2. Carbon Energy, 2023, 5(3): e269

[5]

Cao Y , Gou H , Zhu P , Jin Z . Ingenious design of CoAl-LDH p-n heterojunction based on CuI as holes receptor for photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2022, 41(6): 2206079–2206085

[6]

Guan C , Liao Y , Xiang Q . Dual-facet engineering of surface carboxyl functionalization and interlayer potassium ions regulation in carbon nitride for enhanced CO2 photoreduction. Science China Materials, 2024, 679(2): 473–483

[7]

Xiao Q , Yang T , Guo X , Jin Z . S-scheme heterojunction constructed by ZnCdS and CoWO4 nano-ions promotes photocatalytic hydrogen production. Surfaces and Interfaces, 2023, 43: 103577

[8]

Li S , Peng S , Li Y . Constructing an open-structured J-type ZnIn2S4/In(OH)3 heterojunction for photocatalytical hydrogen generation. Journal of Physical Chemistry Letters, 2024, 15(19): 5215–5222

[9]

Cui E , Hou G , Chen X , Zhang F , Deng Y , Yu G , Li B , Wu Y . In-situ hydrothermal fabrication of Sr2FeTaO6/NaTaO3 heterojunction photocatalyst aimed at the effective promotion of electron-hole separation and visible-light absorption. Applied Catalysis B: Environmental, 2019, 241: 52–65

[10]

Zhou Z , Yao H , Wu Y , Li T , Tsubaki N , Jin Z . Synergistic effect of Cu-graphdiyne (CnH2n-2)/transition bimetallic tungstate formed S-Scheme heterojunction for enhanced photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010

[11]

Wang X , Liu B , Ma S , Zhang Y , Wang L , Zhu G , Huang W , Wang S . Induced dipole moments in amorphous ZnCdS catalysts facilitate photocatalytic H2 evolution. Nature Communications, 2024, 15(1): 2600

[12]

Li Y , Li S , Meng L , Peng S . Synthesis of oriented J type ZnIn2S4@CdIn2S4 heterojunction by controllable cation exchange for enhancing photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2023, 650: 266–274

[13]

Zhu M , Jiang X , Wang Z , Zhang D , Pu X , Li H , Liu J , Hu H , Guo F , Cai P . Preparation and photocatalytic activity of CoFe2O4 nanoparticle modified rod-like Mn0.3Cd0.7S photocatalysts with S-scheme heterojunction. Journal of Alloys and Compounds, 2024, 976: 173245

[14]

Li Y , Hou Y , Fu Q , Peng S , Hu Y . Oriented growth of ZnIn2S4/In(OH)3 heterojunction by a facile hydrothermal transformation for efficient photocatalytic H2 production. Applied Catalysis B: Environment and Energy, 2017, 206: 726–733

[15]

Zhuang C , Chang Y , Li W , Li S , Xu P , Zhang H , Zhang Y , Zhang C , Gao J , Chen G . . Light-induced variation of lithium coordination environment in g-C3N4 nanosheet for highly efficient oxygen reduction reactions. ACS Nano, 2024, 18(6): 5206–5217

[16]

Shit S , Jang W , Bolar S , Murmu N , Koo H , Kuila T . Effect of ion diffusion in cobalt molybdenum bimetallic sulfide toward electrocatalytic water splitting. ACS Applied Materials & Interfaces, 2019, 11(24): 21634–21644

[17]

Ma L , Hu Y , Chen R , Zhu G , Chen T , Lv H , Wang Y , Liang J , Liu H , Yan C . . Self-assembled ultrathin NiCo2S4 nanoflakes grown on ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution. Nano Energy, 2016, 24: 139–147

[18]

Li F , Xu R , Li Y , Liang F , Zhang D , Fu W , Lv X . N-Doped carbon coated NiCo2S4 hollow nanotube as bifunctional electrocatalyst for overall water splitting. Carbon, 2019, 145: 521–528

[19]

Zhang L , Zhang J , Yu H , Yu J . Emerging S-scheme photocatalyst. Advanced Materials, 2022, 34(11): 2107668

[20]

Wu K , Jiang R , Zhao Y , Mao L , Gu X , Cai X , Zhu M . Hierarchical NiCo2S4/ZnIn2S4 heterostructured prisms: high-efficient photocatalysts for hydrogen production under visible-light. Journal of Colloid and Interface Science, 2022, 619: 339–347

[21]

Xu Y , Mo J , Liu Q , Wang X , Ding S . Self-assembled CoTiO3 nanorods with controllable oxygen vacancies for the efficient photochemical reduction of CO2 to CO. Catalysis Science & Technology, 2020, 10(7): 2040–2046

[22]

Zhuang C , Li W , Chang Y , Li S , Zhang Y , Li Y , Gao J , Chen G , Kang Z . Coordination environment dominated catalytic selectivity of photocatalytic hydrogen and oxygen reduction over switchable gallium and nitrogen active sites. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2024, 12(10): 5711–5718

[23]

Kang E , Kim J . Highly boosted photocatalytic H2 production from ZnS particles assisted by Cd-Cu co-doping. Journal of Environmental Chemical Engineering, 2023, 11(3): 109833

[24]

Li Y , Han P , Hou Y , Peng S , Kuang X . Oriented ZnmIn2Sm+3@In2S3 heterojunction with hierarchical structure for efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environment and Energy, 2019, 244(5): 604–611

[25]

Teng Li T , Noritatsu Tsubaki N , Zhiliang Jin Z . S-scheme heterojunction in photocatalytic hydrogen production. Journal of Materials Science and Technology, 2024, 169(10): 82–104

[26]

Xie H , Wang K , Li S , Jin Z . Construction of Co9S8/MoS2/Ni2P double S-scheme heterojunction for enhanced photocatalytic hydrogen evolution. Surfaces and Interfaces, 2023, 42: 103353

[27]

Meng A , Zhou S , Wen D , Han P , Su Y . g-C3N4/CoTiO3 S-scheme heterojunction for enhanced visible light hydrogen production through photocatalytic pure water splitting. Chinese Journal of Catalysis, 2022, 43(10): 2548–2557

[28]

Hu Y , Zhang J , Wang D , Sun J , Zhang L , Liu Y , Gao S , Cui Y . Urchin-like NiCo2S4 structures synthesized through a one-step solvothermal process for high-performance supercapacitors. Particuology, 2019, 45(4): 66–73

[29]

Yang X , Wei S , Ma X , Gao Z , Huang W , Wang D , Liu Z , Wang J . Core-shell CoTiO3@MnO2 heterostructure for the photothermal degradation of tetracycline. Journal of Materials Science, 2023, 58(8): 3551–3567

[30]

Chen X , Tao H , Jiang Y , Li S , Liu Y , Xie K , Wang Y . P-Doped S vacancy-rich NiCo2S4 hollow microspheres for high-performance supercapacitors. Journal of Energy Storage, 2023, 68: 107721

[31]

Chen Q , Li H , Wu Z , Li H , Zhu L , Li C , Zhu X , Sun Y . One-step magneto-solvothermal synthesis of porous network NiCo2S4 for high-performance supercapacitors. Materials Today. Chemistry, 2023, 30: 101585

[32]

Li R , Zhang C , You K , Li B , Bu W , Meng X , Ma B , Ding Y . Molecular confined synthesis of magnetic CoOx/Co/C hybrid catalyst for photocatalytic water oxidation and CO2 reduction. Chinese Chemical Letters, 2023, 34(12): 108801

[33]

Du G , Fan Y , Jia L , Wang Y , Hao Y , Zhao W , Su Q , Xu B . Sulfur-deficient CoNi2S4 nanoparticles-anchored porous carbon nanofibers as bifunctional electrocatalyst for overall water splitting. Frontiers of Chemical Science and Engineering, 2023, 17(11): 1707–1717

[34]

Hou T , Chen L , Yang Y , Wang J , Yang T , Rao W . Green and efficient piezocatalytic hydrogen production achieved by modifying SrBi4Ti4O15 with CdSe. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2024, 12(14): 5088–5096

[35]

Li W , Ma H , Liu Z , Li J , Fang P , Xiong R , Pan C , Wei J . In situ electronic redistribution tuning of ZnIn2S4 nanosheets on NiCo2S4 hollow tube for boosted photocatalytic hydrogen evolution. Applied Surface Science, 2022, 598: 153801

[36]

Jiang K , Iqbal W , Yang B , Rauf M , Ali I , Lu X , Mao Y . Noble metal-free NiCo2S4/CN sheet-on-sheet heterostructure for highly efficient visible-light-driven photocatalytic hydrogen evolution. Journal of Alloys and Compounds, 2021, 853: 157284

[37]

Bi Z , Guo R , Ji X , Hu X , Wang J , Chen X , Pan W . Direct Z-scheme CoS/g-C3N4 heterojunction with NiS co-catalyst for efficient photocatalytic hydrogen generation. International Journal of Hydrogen Energy, 2022, 47(81): 34430–34443

[38]

Ma H , Tan Y , Liu Z , Wei J , Xiong R . Construction of CoSx-ZnIn2S4 hollow nanocages derived from metal-organic frameworks for efficient photocatalytic hydrogen production. New Journal of Chemistry, 2021, 45(31): 13860–13868

[39]

Ye R , Fang H , Zheng Y , Li N , Wang Y , Tao X . Fabrication of CoTiO3/g-C3N4 hybrid photocatalysts with enhanced H2 evolution: Z-scheme photocatalytic mechanism insight. ACS Applied Materials & Interfaces, 2016, 8(22): 13879–13889

[40]

Zhang L , Wu Y , Tsubaki N , Jin Z . 2D/3D S-scheme heterojunction interface of CeO2-Cu2O promotes ordered charge transfer for efficient photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2023, 39(12): 2302051

[41]

Yang C , Li X , Jin Z . Square meter lever and durable photocatalytic hydrogen production over manipulating the growth of graphdiyne morphology S-scheme heterojunction. Science China Materials, 2024, 67(2): 493–503

[42]

You K , Li B , Li X , Li R , Wu J , Ma B , Ding Y . Efficient photocatalytic hydrogen production over ZnIn2S4 by producing sulfur vacancies and coupling with nickel-based polyoxometalate. Chemical Communications, 2023, 59(73): 10972–10975

[43]

Fan Z , Guo X , Yang M , Jin Z . Mechanochemically preparation and application of graphdiyne coupled with CdSe nanoparticles for efficient photocatalytic hydrogen production. Chinese Journal of Catalysis, 2022, 43(10): 2708–2719

[44]

Hao X , Cui Z , Zhou J , Wang Y , Hu Y , Wang Y , Zou Z . Architecture of high efficient zinc vacancy mediated Z-scheme photocatalyst from metal-organic frameworks. Nano Energy, 2018, 52: 105–116

[45]

Jin F , Yang B , Wang X , Li T , Tsubaki N , Jin Z . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n−2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198

[46]

Zhang M , Li K , Hu C , Ma K , Sun W , Huang X , Ding Y . Co nanoparticles modified phase junction CdS for photoredox synthesis of hydrobenzoin and hydrogen evolution. Chinese Journal of Catalysis, 2023, 47: 254–264

[47]

Chen Y , Chuang C , Qin Z , Shen S , Doane T , Burda C . Electron-transfer dependent photocatalytic hydrogen generation over cross-linked CdSe/TiO2 type-II heterostructure. Nanotechnology, 2017, 28(8): 084002

[48]

Liu J , Yang X , Guo X , Jin Z . Flowered molybdenum base trimetallic oxide decorated by CdS nanorod construct S-scheme heterojunctions for efficient photocatalytic hydrogen evolution. Journal of Materials Science and Technology, 2024, 196: 112–124

[49]

Cheng C , He B , Fan J , Cheng B , Cao S , Yu J . An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism. Advanced Materials, 2021, 33(22): 2100317

[50]

Jin Z , Li H , Li J . Efficient photocatalytic hydrogen evolution over graphdiyne boosted with a cobalt sulfide formed S-scheme heterojunctions. Chinese Journal of Catalysis, 2022, 43(2): 303–315

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1545KB)

3676

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/