Probing the dynamics of methanol in copper-loaded zeolites via quasi-elastic and inelastic neutron scattering

Vainius Skukauskas , Nicolas De Souza , Emma K. Gibson , Ian P. Silverwood

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (1) : 5

PDF (645KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (1) : 5 DOI: 10.1007/s11705-024-2506-1
RESEARCH ARTICLE

Probing the dynamics of methanol in copper-loaded zeolites via quasi-elastic and inelastic neutron scattering

Author information +
History +
PDF (645KB)

Abstract

The dynamics of methanol within prototype methanol synthesis catalysts were studied using quasi-elastic neutron scattering. Three Cu-exchanged zeolites (mordenite, SSZ-13 and ZSM-5) were studied after methanol loading and showed jump diffusion coefficients between 1.04 × 10−10 and 2.59 × 10−10 m2·s–1. Non-Arrhenius behavior was observed with varying temperature due to methoxy formation at Brønsted acid sites and methanol clustering around copper cations.

Graphical abstract

Keywords

quasielastic neutron scattering / inelastic neutron scattering / methanol / diffusion / zeolites

Cite this article

Download citation ▾
Vainius Skukauskas, Nicolas De Souza, Emma K. Gibson, Ian P. Silverwood. Probing the dynamics of methanol in copper-loaded zeolites via quasi-elastic and inelastic neutron scattering. Front. Chem. Sci. Eng., 2025, 19(1): 5 DOI:10.1007/s11705-024-2506-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Van Speybroeck V , Hemelsoet K , Joos L , Waroquier M , Bell R G , Catlow C R A . Advances in theory and their application within the field of zeolite chemistry. Chemical Society Reviews, 2015, 44(20): 7044–7111

[2]

Mitra S , Sharma V K , Mukhopadhyay R . Diffusion of confined fluids in microporous zeolites and clay materials. Reports on Progress in Physics, 2021, 84(6): 066501

[3]

Vanelderen P , Vancauwenbergh J , Sels B F , Schoonheydt R A . Coordination chemistry and reactivity of copper in zeolites. Coordination Chemistry Reviews, 2013, 257(2): 483–494

[4]

Snyder B E R , Bols M L , Schoonheydt R A , Sels B F , Solomon E I . Iron and copper active sites in zeolites and their correlation to metalloenzymes. Chemical Reviews, 2018, 118(5): 2718–2768

[5]

Colby J , Stirling D I , Dalton H . The soluble methane mono oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n alkanes, n alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochemical Journal, 1977, 165(2): 395–402

[6]

Park M B , Park E D , Ahn W S . Recent progress in direct conversion of methane to methanol over copper-exchanged zeolites. Frontiers in Chemistry, 2019, 7: 514

[7]

O’Malley A J , Catlow C R A . Sorbate dynamics in zeolite catalysts. Experimental Methods in the Physical Sciences, 2017, 49: 349–401

[8]

Lin D H , Ducarme V , Coudurier G , Vedrine J C . Adsorption and diffusion of different hydrocarbons in MFI zeolite of varying crystallite sizes. Studies in Surface Science and Catalysis, 1989, 46: 615–623

[9]

Millot B , Méthivier A , Jobic H , Moueddeb H , Dalmon J A . Permeation of linear and branched alkanes in ZSM-5 supported membranes. Microporous and Mesoporous Materials, 2000, 38(1): 85–95

[10]

Heink W , Kärger J , Pfeifer H , Datema K P , Nowak A K . High-temperature pulsed field gradient nuclear magnetic resonance self-diffusion measurements of n-alkanes in MFI-type zeolites. Journal of the Chemical Society, Faraday Transactions, 1992, 88(23): 3505–3509

[11]

BéeM. Quasielastic Neutron Scattering: Principles and Applications in Solid State Chemistry, Biology and Materials Science. Bristol: Adam Hilger, 1988

[12]

Mukhopadhyay R , Mitra S . Molecular diffusion and confinement effect: neutron scattering study. Indian Journal of Pure and Applied Physics, 2006, 44: 732–740

[13]

Matam S K , Catlow C R A , Silverwood I P , O’Malley A J . Methanol dynamics in H-ZSM-5 with Si/Al ratio of 25: a quasi-elastic neutron scattering (QENS) study. Topics in Catalysis, 2021, 64(9-12): 699–706

[14]

Silverwood I P , Hamilton N G , McFarlane A , Ormerod R M , Guidi T , Bones J , Dudman M P , Goodway C M , Kibble M , Parker S F . . Experimental arrangements suitable for the acquisition of inelastic neutron scattering spectra of heterogeneous catalysts. Review of Scientific Instruments, 2011, 82(3): 034101

[15]

de Souza N R , Klapproth A , Iles G N . EMU: high-resolution backscattering spectrometer at ANSTO. Neutron News, 2016, 27(2): 20–21

[16]

Arnold O , Bilheux J C , Borreguero J M , Buts A , Campbell S I , Chapon L , Doucet M , Draper N , Ferraz Leal R , Gigg M A . . Mantid—Data analysis and visualization package for neutron scattering and μSR experiments. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 764: 156–166

[17]

Azuah R T , Kneller L R , Qiu Y , Tregenna-Piggott P L W , Brown C M , Copley J R D , Dimeo R M . DAVE: a comprehensive software suite for the reduction, visualization, and analysis of low energy neutron spectroscopic data. Journal of Research of the National Institute of Standards and Technology, 2009, 114(6): 341–358

[18]

Parker S F , Fernandez-Alonso F , Ramirez-Cuesta A J , Tomkinson J , Rudic S , Pinna R S , Gorini G , Fernández Castañon J . Recent and future developments on TOSCA at ISIS. Journal of Physics: Conference Series, 2014, 554: 012003

[19]

Singwi K S , Sjölander A . Resonance absorption of nuclear gamma rays and the dynamics of atomic motions. Physical Review, 1960, 120(4): 1093–1102

[20]

O’Malley A J , Parker S F , Chutia A , Farrow M R , Silverwood I P , García-Sakai V , Catlow C R A . Room temperature methoxylation in zeolites: insight into a key step of the methanol-to-hydrocarbons process. Chemical Communications, 2016, 52(14): 2897–2900

[21]

Zachariou A , Hawkins A , Parker S F , Lennon D , Howe R F . Neutron spectroscopy studies of methanol to hydrocarbons catalysis over ZSM-5. Catalysis Today, 2021, 368: 20–27

[22]

Schenkel R , Jentys A , Parker S F , Lercher J A . Investigation of the adsorption of methanol on alkali metal cation exchanged zeolite X by inelastic neutron scattering. Journal of Physical Chemistry B, 2004, 108(23): 7902–7910

[23]

Plant D F , Maurin G , Bell R G . Molecular dynamics simulation of methanol in zeolite NaY. Studies in Surface Science and Catalysis, 2005, 158: 963–970

[24]

Woodward C L M , Porter A J , Morton K S C , O’Malley A J . Methanol diffusion in H-ZSM-5 catalysts as a function of loading and Si/Al ratio: a classical molecular dynamics study. Catalysis Communications, 2022, 164: 106415

[25]

Botchway C H , Tia R , Adei E , O’Malley A J , Dzade N Y , Hernandez-Tamargo C , De Leeuw N H . Influence of topology and brønsted acid site presence on methanol diffusion in zeolites beta and MFI. Catalysts, 2020, 10(11): 1342

[26]

GibsonESkukasukasVSilverwoodI P. INS vibrational spectroscopy of surface species relevant to the partial oxidation of methane. STFC ISIS Neutron and Muon Source, 2022

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (645KB)

4502

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/