Enhanced C3H6/C3H8 separation performance in polysulfone membrane blended with rigid ZIF-8 crystals

Jiayu Luo, Luxi Lyu, Zongjie Yin, Yanying Wei

PDF(1336 KB)
PDF(1336 KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (1) : 4. DOI: 10.1007/s11705-024-2504-3
RESEARCH ARTICLE

Enhanced C3H6/C3H8 separation performance in polysulfone membrane blended with rigid ZIF-8 crystals

Author information +
History +

Abstract

Metal-organic frameworks have a wide range of applications in the field of membrane separation, but the inherent flexible structure and the difficulty for scale-up hinder their further applications. Herein, the relatively rigid zeolitic imidazolate framework-8 particles prepared under an electric field (E-ZIF-8) were used as the fillers in polysulfone (PSF) to form series of mixed matrix membranes. It was found that the introduction of E-ZIF-8 improves both the C3H6 permeability and C3H6/C3H8 selectivity of the membranes. Compared with the bare PSF membrane, the C3H6/C3H8 selectivity of the 30 wt % E-ZIF-8@PSF membrane increased by ~230%, while the C3H6 permeability was enhanced by ~830%. In addition, time and pressure dependence analysis demonstrated that such E-ZIF-8@PSF membranes also exhibited good long-term stability and pressure resistance, offering significant industrialization advantages.

Graphical abstract

Keywords

gas separation / metal-organic frameworks / mixed matrix membranes

Cite this article

Download citation ▾
Jiayu Luo, Luxi Lyu, Zongjie Yin, Yanying Wei. Enhanced C3H6/C3H8 separation performance in polysulfone membrane blended with rigid ZIF-8 crystals. Front. Chem. Sci. Eng., 2025, 19(1): 4 https://doi.org/10.1007/s11705-024-2504-3

References

[1]
Azhin M , Kaghazchi T , Rahmani M . A review on olefin/paraffin separation using reversible chemical complexation technology. Journal of Industrial and Engineering Chemistry, 2008, 14(5): 622–638
CrossRef Google scholar
[2]
Bryan P F . Removal of propylene from fuel-grade propane. Separation and Purification Reviews, 2004, 33(2): 157–182
CrossRef Google scholar
[3]
Fallanza M , Ortiz A , Gorri D , Ortiz I . Experimental study of the separation of propane/propylene mixtures by supported ionic liquid membranes containing Ag+-rtils as carrier. Separation and Purification Technology, 2012, 97: 83–89
CrossRef Google scholar
[4]
PanYLiTLestariGLaiZ. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes. Journal of Membrane Science, 2012, 390–391: 93–98
[5]
Deng J , Lu Z , Ding L , Li Z K , Wei Y , Caro J , Wang H . Fast electrophoretic preparation of large-area two-dimensional titanium carbide membranes for ion sieving. Chemical Engineering Journal, 2021, 408: 127806
CrossRef Google scholar
[6]
Liu H , Chen Y , Wei Y , Wang H . CO2-tolerant U-shaped hollow fiber membranes for hydrogen separation. International Journal of Hydrogen Energy, 2017, 42(7): 4208–4215
CrossRef Google scholar
[7]
Li L , Duan Y , Liao S , Ke Q , Qiao Z , Wei Y . Adsorption and separation of propane/propylene on various ZIF-8 polymorphs: insights from GCMC simulations and the ideal adsorbed solution theory (IAST). Chemical Engineering Journal, 2020, 386: 123945
CrossRef Google scholar
[8]
Zhou Y , Zhang Y , Xue J , Wang R , Yin Z , Ding L , Wang H . Graphene oxide-modified g-C3N4 nanosheet membranes for efficient hydrogen purification. Chemical Engineering Journal, 2021, 420(1): 129574
CrossRef Google scholar
[9]
Burns R L , Koros W J . Defining the challenges for C3H6/C3H8 separation using polymeric membranes. Journal of Membrane Science, 2003, 211(2): 299–309
CrossRef Google scholar
[10]
Steel K M , Koros W J . An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials. Carbon, 2005, 43(9): 1843–1856
CrossRef Google scholar
[11]
Xu L , Rungta M , Koros W J . Matrimid derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation. Journal of Membrane Science, 2011, 380(1–2): 138–147
CrossRef Google scholar
[12]
Ma X , Lin Y S , Wei X , Kniep J . Ultrathin carbon molecular sieve membrane for propylene/propane separation. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(2): 491–499
CrossRef Google scholar
[13]
Kosinov N , Gascon J , Kapteijn F , Hensen E J . Recent developments in zeolite membranes for gas separation. Journal of Membrane Science, 2016, 499: 65–79
CrossRef Google scholar
[14]
Gascon J , Kapteijn F , Zornoza B , Sebastian V , Casado C , Coronas J . Practical approach to zeolitic membranes and coatings: state of the art, opportunities, barriers, and future perspectives. Chemistry of Materials, 2012, 24(15): 2829–2844
CrossRef Google scholar
[15]
Zhou X , Miao G , Xu G , Luo J , Yang C , Xiao J . Mixed (Ag+, Ca2+)-LTA zeolite with suitable pore feature for effective separation of C3H6/C3H8. Chemical Engineering Journal, 2022, 450(1): 137913
CrossRef Google scholar
[16]
An H , Cho K , Back S , Do X , Jeon J D , Lee H , Baek K Y , Lee J . The significance of the interfacial interaction in mixed matrix membranes for enhanced propylene/propane separation performance and plasticization resistance. Separation and Purification Technology, 2021, 261: 118279
CrossRef Google scholar
[17]
Chen Y , Qiao Z , Lv D , Duan C , Sun X , Wu H , Shi R , Xia Q , Li Z . Efficient adsorptive separation of C3H6 over C3H8 on flexible and thermoresponsive CPL-1. Chemical Engineering Journal, 2017, 328: 360–367
CrossRef Google scholar
[18]
Yuan Y , Wu H , Xu Y , Lv D , Tu S , Wu Y , Li Z , Xia Q . Selective extraction of methane from C1/C2/C3 on moisture-resistant MIL-142A with interpenetrated networks. Chemical Engineering Journal, 2020, 395: 125057
CrossRef Google scholar
[19]
Chen Y , Wu H , Yu L , Tu S , Wu Y , Li Z , Xia Q . Separation of propylene and propane with pillar-layer metal-organic frameworks by exploiting thermodynamic-kinetic synergetic effect. Chemical Engineering Journal, 2022, 431(4): 133284
CrossRef Google scholar
[20]
Li K , Olson D H , Seidel J , Emge T J , Gong H , Zeng H , Li J . Zeolitic imidazolate frameworks for kinetic separation of propane and propene. Journal of the American Chemical Society, 2009, 131(30): 10368–10369
CrossRef Google scholar
[21]
Zhang C , Lively R P , Zhang K , Johnson J R , Karvan O , Koros W J . Unexpected molecular sieving properties of zeolitic imidazolate framework-8. Journal of Physical Chemistry Letters, 2012, 3(16): 2130–2134
CrossRef Google scholar
[22]
Kwon H T , Jeong H K , Lee A S , An H S , Lee J S . Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. Journal of the American Chemical Society, 2015, 137(38): 12304–12311
CrossRef Google scholar
[23]
Knebel A , Geppert B , Volgmann K , Kolokolov D I , Stepanov A G , Twiefel J , Heitjans P , Volkmer D , Caro J . Defibrillation of soft porous metal-organic frameworks with electric fields. Science, 2017, 358(6361): 347–351
CrossRef Google scholar
[24]
Zhou S , Wei Y , Li L , Duan Y , Hou Q , Zhang L , Ding L X , Xue J , Wang H , Caro J . Paralyzed membrane: current-driven synthesis of a metal-organic framework with sharpened propene/propane separation. Science Advances, 2018, 4(10): eaau1393
CrossRef Google scholar
[25]
Hillman F , Zimmerman J M , Paek S M , Hamid M R A , Lim W T , Jeong H K . Rapid microwave-assisted synthesis of hybrid zeolitic–imidazolate frameworks with mixed metals and mixed linkers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(13): 6090–6099
CrossRef Google scholar
[26]
Fan W , Ying Y , Peh S B , Yuan H , Yang Z , Yuan Y D , Shi D , Yu X , Kang C , Zhao D . Multivariate polycrystalline metal-organic framework membranes for CO2/CH4 separation. Journal of the American Chemical Society, 2021, 143(42): 17716–17723
CrossRef Google scholar
[27]
Lee M J , Kwon H T , Jeong H K . High-flux zeolitic imidazolate framework membranes for propylene/propane separation by postsynthetic linker exchange. Angewandte Chemie International Edition, 2018, 57(1): 156–161
CrossRef Google scholar
[28]
Hou Q , Zhou S , Wei Y , Caro J , Wang H . Balancing the grain boundary structure and the framework flexibility through bimetallic MOF membranes for gas separation. Journal of the American Chemical Society, 2020, 142(21): 9582–9586
CrossRef Google scholar
[29]
Choi E , Choi J I , Kim Y J , Kim Y J , Eum K , Choi Y , Kwon O , Kim M , Choi W , Ji H . . Graphene nanoribbon hybridization of zeolitic imidazolate framework membranes for intrinsic molecular separation. Angewandte Chemie International Edition, 2022, 61(49): e202214269
CrossRef Google scholar
[30]
Babu D J , He G , Hao J , Vahdat M T , Schouwink P A , Mensi M , Agrawal K V . Restricting lattice flexibility in polycrystalline metal-organic framework membranes for carbon capture. Advanced Materials, 2019, 31(28): 1900855
CrossRef Google scholar
[31]
Zhou S , Shekhah O , Ramírez A , Lyu P , Abou-Hamad E , Jia J , Li J , Bhatt P M , Huang Z , Jiang H . . Asymmetric pore windows in MOF membranes for natural gas valorization. Nature, 2022, 606(7915): 706–712
CrossRef Google scholar
[32]
Zhao Y , Yang X , Luo J , Wei Y , Wang H . Fast-current-driven synthesis of ultrathin ZIF-8 membrane on ceramic tube for propene/propane separation. AIChE Journal. American Institute of Chemical Engineers, 2023, 69(4): e17934
CrossRef Google scholar
[33]
Zhao Y , Yang X , Luo J , Wei Y , Wang H . Porous stainless steel hollow fiber-supported ZIF-8 membranes via FCDS for hydrogen/carbon dioxide separation. Separation and Purification Technology, 2022, 295: 121365
CrossRef Google scholar
[34]
Zhao Y , Wei Y , Lyu L , Hou Q , Caro J , Wang H . Flexible polypropylene-supported ZIF-8 membranes for highly efficient propene/propane separation. Journal of the American Chemical Society, 2020, 142(50): 20915–20919
CrossRef Google scholar
[35]
FlanigenE MBroachR WWilsonS T. Zeolites in Industrial Separation and Catalysis. 1st ed. Berlin: Wiley-VCH Verlag GmbH & Co. KGaA, 2010, 329–353
[36]
Zhang C , Zhang K , Xu L , LaBreche Y , Kraftschik B , Koros W J . Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations. AIChE Journal. American Institute of Chemical Engineers, 2014, 60(7): 2625–2635
CrossRef Google scholar
[37]
Ma X , Swaidan R J , Wang Y , Hsiung C E , Han Y , Pinnau I . Highly compatible hydroxyl-functionalized microporous polyimide-ZIF-8 mixed matrix membranes for energy efficient propylene/propane separation. ACS Applied Nano Materials, 2018, 1(7): 3541–3547
CrossRef Google scholar
[38]
Park S , Abdul Hamid M R , Jeong H K . Highly propylene-selective mixed-matrix membranes by in situ metal-organic framework formation using a polymer-modification strategy. ACS Applied Materials & Interfaces, 2019, 11(29): 25949–25957
CrossRef Google scholar
[39]
Lyu L , Wu H , Li L , Wei Y , Wang H C . 3H6/C3H8 adsorption behavior study of stiffened ZIF-8 prepared under an electric field. Chemieingenieurtechnik, 2022, 94(1–2): 119–127
CrossRef Google scholar
[40]
Zhang Y , Jia Y , Li M , Hou L . Influence of the 2-methylimidazole/zinc nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate framework-8 crystals at room temperature. Scientific Reports, 2018, 8(1): 9597
CrossRef Google scholar
[41]
Saliba D , Ammar M , Rammal M , Al-Ghoul M , Hmadeh M . Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. Journal of the American Chemical Society, 2018, 140(5): 1812–1823
CrossRef Google scholar
[42]
Su N C , Sun D T , Beavers C M , Britt D K , Queen W L , Urban J J . Enhanced permeation arising from dual transport pathways in hybrid polymer-MOF membranes. Energy & Environmental Science, 2016, 9(3): 922–931
CrossRef Google scholar
[43]
Rupiasih N N , Suyanto H , Sumadiyasa M , Wendri N . Study of effects of low doses UV radiation on microporous polysulfone membranes in sterilization process. Open Journal of Organic Polymer Materials, 2013, 3(1): 12–18
CrossRef Google scholar
[44]
Bai S , Sridhar S , Khan A A . Metal-ion mediated separation of propylene from propane using PPO membranes. Journal of Membrane Science, 1998, 147(1): 131–139
CrossRef Google scholar
[45]
Sridhar S , Khan A A . Simulation studies for the separation of propylene and propane byepthylcellulose membrane. Journal of Membrane Science, 1999, 159(1–2): 209–219
CrossRef Google scholar
[46]
Staudt-Bickel C , Koros W J . Olefin/paraffin gas separations with 6FDA-based polyimide membranes. Journal of Membrane Science, 2000, 170(2): 205–214
CrossRef Google scholar
[47]
AskariMXiaoYLiPChungT S. Natural gas purification and olefin/paraffin separation using cross-linkable 6FDA-Durene/DABA co-polyimides grafted with α, β, and γ-cyclodextrin. Journal of Membrane Science, 2012, 390–391: 141–151
[48]
Tanaka K , Taguchi A , Hao J Q , Kita H , Okamoto K . Permeation and separation properties of polyimide membranes to olefins and paraffins. Journal of Membrane Science, 1996, 121(2): 197–207
CrossRef Google scholar
[49]
Zhang C , Dai Y , Johnson J R , Karvan O , Koros W J . High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. Journal of Membrane Science, 2012, 389: 34–42
CrossRef Google scholar
[50]
Park S , Jeong H K . Cross-linked polyimide/ZIF-8 mixed-matrix membranes by in situ formation of ZIF-8: effect of cross-linking on their propylene/propane separation. Membranes, 2022, 12(10): 964
CrossRef Google scholar
[51]
Peng D , Feng X , Yang G , Niu X , Liu Z , Zhang Y . In-situ growth of silver complex on ZIF-8 towards mixed matrix membranes for propylene/propane separation. Journal of Membrane Science, 2023, 668: 121267
CrossRef Google scholar
[52]
Cheng Z , Zhang P , Wang Z , Jiang H , Wang W , Liu D , Wang L , Zhu G , Zou X . A bipyridyl covalent organic framework with coordinated Cu(I) for membrane C3H6/C3H8 separation. Small, 2023, 19(30): 2300438
CrossRef Google scholar
[53]
Su Y , Li D , Shan M , Feng X , Gascon J , Wang Y , Zhang Y . Uniformly distributed mixed matrix membranes via a solution processable strategy for propylene/propane separation. Angewandte Chemie International Edition, 2024, 63(7): e202316093
CrossRef Google scholar
[54]
Jung J P , Kim M J , Bae Y S , Kim J H . Facile preparation of Cu(I) impregnated MIL-101(Cr) and its use in a mixed matrix membrane for olefin/paraffin separation. Journal of Applied Polymer Science, 2018, 135(31): 46545
CrossRef Google scholar
[55]
Sun H , Ma C , Wang T , Xu Y , Yuan B , Li P , Kong Y . Preparation and characterization of C60-filled ethyl cellulose mixed-matrix membranes for gas separation of propylene/propane. Chemical Engineering & Technology, 2014, 37(4): 611–619
CrossRef Google scholar
[56]
Gholamipour N , Sadeghi M , Shafiei M . Effect of silica nanoparticles on the performance of polysulfone membranes for olefin-paraffin separation. Chemical Engineering & Technology, 2019, 42(11): 2292–2301
CrossRef Google scholar
[57]
Zhang Q , Li H , Chen S , Duan J , Jin W . Mixed-matrix membranes with soluble porous organic molecular cage for highly efficient C3H6/C3H8 separation. Journal of Membrane Science, 2020, 611: 118288
CrossRef Google scholar
[58]
Jiang H , Guo Z , Wang H , Liu X , Ren Y , Huang T , Xue J , Wu H , Zhang J , Yin Y . . Solvent-processable 0D covalent organic framework quantum dot engineered composite membranes for biogas upgrading. Journal of Membrane Science, 2021, 640: 119803
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

We gratefully acknowledge the support from the Natural Science Foundation of China (Grant Nos. 22078107, U23A20115), the Natural Science Foundation of Guangdong Province (Grant No. 2024A1515012724) and Guangzhou Science and Technology Project (Grant No. 2024A04J6251).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(1336 KB)

Accesses

Citations

Detail

Sections
Recommended

/