Synergistic effect of Fe-Mn bimetallic sites with close proximity for enhanced CO2 hydrogenation performance

Haoting Liang , Qiao Zhao , Shengkun Liu , Chongyang Wei , Yidan Wang , Yue Wang , Shouying Huang , Xinbin Ma

Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (11) : 140

PDF (1197KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (11) : 140 DOI: 10.1007/s11705-024-2491-4
RESEARCH ARTICLE

Synergistic effect of Fe-Mn bimetallic sites with close proximity for enhanced CO2 hydrogenation performance

Author information +
History +
PDF (1197KB)

Abstract

The Fe-Mn bimetallic catalyst is a potential candidate for the conversion of CO2 into value-added chemicals. The interaction between the two metals plays a significant role in determining the catalytic performance, however which remains controversial. In this study, we aim to investigate the impact of tuning the proximity of Fe-Mn bimetallic catalysts with similar nanoparticle size. And its effect on the physicochemical properties of the catalysts and corresponding performance were investigated. It was found that closer Fe-Mn proximity resulted in enhanced CO2 hydrogenation activity and inhibited CH4 formation. The physiochemical properties of prepared catalysts were characterized using X-ray diffraction, H2 temperature programmed reduction, and X-ray photoelectron spectroscopy, revealing that a closer Fe-Mn distance promoted electron transfer from Mn to Fe, thereby facilitating Fe carburization. The adsorption behavior of CO2 and the identification of reaction intermediates were analyzed using CO2-temperature programed desorption and in situ Fourier transform infrared spectroscopy, confirming the intimate Fe-Mn sites contributed to CO2 adsorption and the formation of HCOO* species, ultimately leading to increased CO2 conversion and hydrocarbon production. The discovery of a synergistic effect at the intimate Fe-Mn sites in this study provides valuable insights into the relationship between active sites and promoters.

Graphical abstract

Keywords

CO2 hydrogenation / Fe-based catalyst / proximity effect / Mn promoter

Cite this article

Download citation ▾
Haoting Liang, Qiao Zhao, Shengkun Liu, Chongyang Wei, Yidan Wang, Yue Wang, Shouying Huang, Xinbin Ma. Synergistic effect of Fe-Mn bimetallic sites with close proximity for enhanced CO2 hydrogenation performance. Front. Chem. Sci. Eng., 2024, 18(11): 140 DOI:10.1007/s11705-024-2491-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

De S , Dokania A , Ramirez A , Gascon J . Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2 utilization. ACS Catalysis, 2020, 10(23): 14147–14185

[2]

Lüthi D , Le Floch M , Bereiter B , Blunier T , Barnola J , Siegenthaler U , Raynaud D , Jouzel J , Fischer H , Kawamura K , Stocker T F . High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 2008, 453(7193): 379–382

[3]

Kondratenko E V , Mul G , Baltrusaitis J , Larrazábal G O , Pérez J . Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy & Environmental Science, 2013, 6(11): 3112–3135

[4]

Zhou C , Shi J , Zhou W , Cheng K , Zhang Q , Kang J , Wang Y . Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide. ACS Catalysis, 2020, 10(1): 302–310

[5]

Artz J , Müller T E , Thenert K , Kleinekorte J , Meys R , Sternberg A , Bardow A , Leitner W . Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chemical Reviews, 2018, 118(2): 434–504

[6]

Cui X , Gao P , Li S , Yang C , Liu Z , Wang H , Zhong L , Sun Y . Selective production of aromatics directly from carbon dioxide hydrogenation. ACS Catalysis, 2019, 9(5): 3866–3876

[7]

Jia J , Shan Y , Tuo Y , Yan H , Feng X , Chen D . Review of iron-based catalysts for carbon dioxide Fischer-Tropsch synthesis. Transactions of Tianjin University, 2024, 30(2): 178–197

[8]

Liu J , Song Y , Guo X , Song C , Guo X . Recent advances in application of iron-based catalysts for COx hydrogenation to value-added hydrocarbons. Chinese Journal of Catalysis, 2022, 43(3): 731–754

[9]

Zhai P , Li Y , Wang M , Liu J , Cao Z , Zhang J , Xu Y , Liu X , Li Y , Zhu Q , Xiao D , Wen X D , Ma D . Development of direct conversion of syngas to unsaturated hydrocarbons based on Fischer-Tropsch route. Chem, 2021, 7(11): 3027–3051

[10]

Kulikova M V , Chudakova M V , Ivantsov M I , Dementyva O S , Maksimov A L . Hydrocarbon synthesis from CO2 and H2 using the ultrafine iron-containing catalytic systems based on carbonized cellulose. Eurasian Chemico-Technological Journal, 2022, 24(2): 149–156

[11]

Liang B , Sun T , Ma J , Duan H , Li L , Yang X , Zhang Y , Su X , Huang Y , Zhang T . Mn decorated Na/Fe catalysts for CO2 hydrogenation to light olefins. Catalysis Science & Technology, 2019, 9(2): 456–464

[12]

Wang H , Yang Y , Xu J , Wang H , Ding M , Li Y . Study of bimetallic interactions and promoter effects of FeZn, FeMn and FeCr Fischer-Tropsch synthesis catalysts. Journal of Molecular Catalysis A: Chemical, 2010, 326(1): 29–40

[13]

Zhang P , Yan J , Han F , Qiao X , Guan Q , Li W . Controllable assembly of Fe3O4-Fe3C@MC by in situ doping of Mn for CO2 selective hydrogenation to light olefins. Catalysis Science & Technology, 2022, 12(7): 2360–2368

[14]

Al-Dossary M , Ismail A A , Fierro J L G , Bouzid H , Al-Sayari S A . Effect of Mn loading onto MnFeO nanocomposites for the CO2 hydrogenation reaction. Applied Catalysis B: Environmental, 2015, 165: 651–660

[15]

Liu B , Geng S , Zheng J , Jia X , Jiang F , Liu X . Unravelling the new roles of Na and Mn promoter in CO2 hydrogenation over Fe3O4-based catalysts for enhanced selectivity to light α-olefins. ChemCatChem, 2018, 10(20): 4718–4732

[16]

Li T , Yang Y , Zhang C , An X , Wan H , Tao Z , Xiang H , Li Y , Yi F , Xu B . Effect of manganese on an iron-based Fischer-Tropsch synthesis catalyst prepared from ferrous sulfate. Fuel, 2007, 86(7): 921–928

[17]

Ding X , Zhu M , Han Y , Yang Z . Revisiting the syngas conversion to olefins over Fe-Mn bimetallic catalysts: insights from the proximity effects. Journal of Catalysis, 2023, 417: 213–225

[18]

Liu S , Zhao Q , Han X , Wei C , Liang H , Wang Y , Huang S , Ma X . Proximity effect of Fe-Zn bimetallic catalysts on CO2 hydrogenation performance. Transactions of Tianjin University, 2023, 29(4): 293–303

[19]

Han Y , Fang C , Ji X , Wei J , Ge Q , Sun J . Interfacing with carbonaceous potassium promoters boosts catalytic CO2 hydrogenation of iron. ACS Catalysis, 2020, 10(20): 12098–12108

[20]

Hu B , Frueh S , Garces H F , Zhang L , Aindow M , Brooks C , Kreidler E , Suib S L . Selective hydrogenation of CO2 and CO to useful light olefins over octahedral molecular sieve manganese oxide supported iron catalysts. Applied Catalysis B: Environmental, 2013, 132: 54–61

[21]

Yang H , Dang Y , Cui X , Bu X , Li J , Li S , Sun Y , Gao P . Selective synthesis of olefins via CO2 hydrogenation over transition-metal-doped iron-based catalysts. Applied Catalysis B: Environmental, 2023, 321: 122050

[22]

Qin C , Wu K , Xu Y , Guo S , Li R , Fan H , Xu D , Ding M . Accelerated syngas-to-heavy fuels production in heterogeneous catalysis via a proximity effect between a promoter and an active site. Cell Reports. Physical Science, 2023, 4(3): 101327

[23]

Han X , Lv J , Huang S , Zhao Q , Wang Y , Li Z , Ma X . Size dependence of carbon-encapsulated iron-based nanocatalysts for Fischer-Trposch synthesis. Nano Research, 2023, 16(5): 6270–6277

[24]

Van Santen R A . Complementary structure sensitive and insensitive catalytic relationships. Accounts of Chemical Research, 2009, 42(1): 57–66

[25]

Wang B , Qian K , Yang W , An W , Lou L , Liu S , Yu K . ZnFe2O4/BiVO4 Z-scheme heterojunction for efficient visible-light photocatalytic degradation of ciprofloxacin. Frontiers of Chemical Science and Engineering, 2023, 17(11): 1728–1740

[26]

Ni X , Li K , Li C , Wu Q , Liu C , Chen H , Wu Q , Ju A . Construction of NiCo2O4 nanoflake arrays on cellulose-derived carbon nanofibers as a freestanding electrode for high-performance supercapacitors. Frontiers of Chemical Science and Engineering, 2023, 17(6): 691–703

[27]

Qi Y , Zeng X , Xiong L , Lin X , Liu B , Qin Y . Efficient conversion of lignin to alkylphenols over highly stable inverse spinel MnFe2O4 catalysts. Frontiers of Chemical Science and Engineering, 2023, 17(8): 1085–1095

[28]

Park J , An K , Hwang Y , Park J , Noh H , Kim J , Park J , Hwang N , Hyeon T . Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Materials, 2004, 3(12): 891–895

[29]

Ren D , Gui K , Gu S . Comparison of sulfur poisoning resistance of Ce/Mn doped γ-Fe2O3 (001) surface in NH3-SCR reaction with DFT method. Applied Surface Science, 2021, 561: 149847

[30]

Shannon R D . Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 1976, 32(5): 751–767

[31]

Denton A R , Ashcroft N W . Vegard’s law. Physical Review A, 1991, 43(6): 3161–3164

[32]

Liang M , Kang W , Xie K . Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique. Journal of Natural Gas Chemistry, 2009, 18(1): 110–113

[33]

Zhu Y , Pan X , Jiao F , Li J , Yang J , Ding M , Han Y , Liu Z , Bao X . Role of manganese oxide in syngas conversion to light olefins. ACS Catalysis, 2017, 7(4): 2800–2804

[34]

Niu L , Liu X , Liu X , Lv Z , Zhang C , Wen X , Yang Y , Li Y , Xu J . In situ XRD study on promotional effect of potassium on carburization of spray-dried precipitated Fe2O3 catalysts. ChemCatChem, 2017, 9(9): 1691–1700

[35]

Szenti I , Efremova A , Kiss J , Sápi A , Óvári L , Halasi G , Haselmann U , Zhang Z , Morales J , Baán K . . Pt/MnO interface induced defects for high reverse water gas shift activity. Angewandte Chemie International Edition, 2024, 136(8): e202317343

[36]

Wang Q , Gao Y , Tumurbaatar C , Bold T , Wei F , Dai Y , Yang Y . Tuned selectivity and enhanced activity of CO2 methanation over Ru catalysts by modified metal-carbonate interfaces. Journal of Energy Chemistry, 2022, 64: 38–46

[37]

Yang C , Zhao H , Hou Y , Ma D . Fe5C2 nanoparticles: a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis. Journal of the American Chemical Society, 2012, 134(38): 15814–15821

[38]

Lu F , Huang J , Wu Q , Zhang Y . Mixture of α-Fe2O3 and MnO2 powders for direct conversion of syngas to light olefins. Applied Catalysis A: General, 2021, 621: 118213

[39]

Lu F , Chen X , Lei Z , Wen L , Zhang Y . Revealing the activity of different iron carbides for Fischer-Tropsch synthesis. Applied Catalysis B: Environmental, 2021, 281: 119521

[40]

Yamashita T , Hayes P . Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 2008, 254(8): 2441–2449

[41]

Mohanta D , Barman K , Jasimuddin S , Ahmaruzzaman M . MnO doped SnO2 nanocatalysts: activation of wide band gap semiconducting nanomaterials towards visible light induced photoelectrocatalytic water oxidation. Journal of Colloid and Interface Science, 2017, 505: 756–762

[42]

Biesinger M C , Payne B P , Grosvenor A P , Lau L W M , Gerson A R , Smart R S C . Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 2011, 257(7): 2717–2730

[43]

Xu D , Fan H , Liu K , Hou G , Qin C , Xu Y , Li R , Wang J , Ding M . Impacts of interaction between active components on catalyst deactivation over KFe/ZSM-5 bifunctional catalyst. ACS Sustainable Chemistry & Engineering, 2023, 11(28): 10441–10452

[44]

Liu N , Wei J , Xu J , Yu Y , Yu J , Han Y , Wang K , Orege J I , Ge Q , Sun J . Elucidating the structural evolution of highly efficient Co-Fe bimetallic catalysts for the hydrogenation of CO2 into olefins. Applied Catalysis B: Environmental, 2023, 328: 122476

[45]

Collins S E , Baltanás M A , Bonivardi A L . An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/β-Ga2O3. Journal of Catalysis, 2004, 226(2): 410–421

[46]

Dostagir N H M D , Rattanawan R , Gao M , Ota J , Hasegawa J , Asakura K , Fukouka A , Shrotri A . Co Single atoms in ZrO2 with inherent oxygen vacancies for selective hydrogenation of CO2 to CO. ACS Catalysis, 2021, 11(15): 9450–9461

[47]

Wang C , Zhang J , Gao X , Ma Q , Fan S , Zhao T . CO2 hydrogenation to linear α-olefins on FeCx/ZnO catalysts: effects of surface oxygen vacancies. Applied Surface Science, 2023, 641: 158543

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1197KB)

Supplementary files

FCE-24045-OF-LH_suppl_1

1568

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/